参考:面试题33. 二叉搜索树的后序遍历序列(递归分治 / 单调栈,清晰图解)
1.递归方法
划分左右区间方法:遍历寻找第一个大于根结点的点。
(1)递归终止条件:左>=右;(2)递推工作:划分左右子树,判断是否为二叉搜索树;(3)返回值:分别判断树、左子树、右子树是否正确。
class Solution {
public:
bool recur(vector<int>&postorder,int i,int j){
if(i>=j) return true;
int p=i;
while(postorder[p]<postorder[j]) p++;
int m=p;
while(postorder[p]>postorder[j]) p++;
return p==j&&recur(postorder,i,m-1)&&recur(postorder,m,j-1);
}
bool verifyPostorder(vector<int>& postorder) {
return recur(postorder,0,postorder.size()-1);
}
};
2.单调栈方法
看了半天大佬的题解,终于看懂了单调栈的做法。leetcode评论区高赞回答
(1)倒序遍历,此时数组遍历顺序:根|右|左,二叉搜索树:根<右>左,起始父节点值记为无穷大;
(2)单调栈中存储的是一个递增序列;
(3)当遇到不能继续构成递增序列的值时,出栈,更新父节点,此后的数值都应该比父结点小,否则不是二叉搜索树
class Solution {
public:
bool verifyPostorder(vector<int>& postorder) {
stack<int>sta;
int root=INT_MAX;
for(int i=postorder.size()-1;i>=0;i--){
if(postorder[i]>root) return false;
while(!sta.empty()&&postorder[i]<sta.top()){
root=sta.top();
sta.pop();
}
sta.push(postorder[i]);
}
return true;
}
};