递归分治&&单调栈&&剑指 Offer 33. 二叉搜索树的后序遍历序列

参考:面试题33. 二叉搜索树的后序遍历序列(递归分治 / 单调栈,清晰图解)

1.递归方法

划分左右区间方法:遍历寻找第一个大于根结点的点。

(1)递归终止条件:左>=右;(2)递推工作:划分左右子树,判断是否为二叉搜索树;(3)返回值:分别判断树、左子树、右子树是否正确。

class Solution {
public:
    bool recur(vector<int>&postorder,int i,int j){
        if(i>=j)    return true;
        int p=i;
        while(postorder[p]<postorder[j])    p++;
        int m=p;
        while(postorder[p]>postorder[j])    p++;
        return p==j&&recur(postorder,i,m-1)&&recur(postorder,m,j-1);
    }
    bool verifyPostorder(vector<int>& postorder) {
        return recur(postorder,0,postorder.size()-1);
    }
};

2.单调栈方法

看了半天大佬的题解,终于看懂了单调栈的做法。leetcode评论区高赞回答

(1)倒序遍历,此时数组遍历顺序:根|右|左,二叉搜索树:根<右>左,起始父节点值记为无穷大;
(2)单调栈中存储的是一个递增序列;
(3)当遇到不能继续构成递增序列的值时,出栈,更新父节点,此后的数值都应该比父结点小,否则不是二叉搜索树

class Solution {
public:
    bool verifyPostorder(vector<int>& postorder) {
        stack<int>sta;
        int root=INT_MAX;
        for(int i=postorder.size()-1;i>=0;i--){
            if(postorder[i]>root)   return false;
            while(!sta.empty()&&postorder[i]<sta.top()){
                root=sta.top();
                sta.pop();
            }
            sta.push(postorder[i]);
        }
        return true;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值