电磁场与波初步学习 总结(四)

本文详细阐述了电磁场在不同媒质交界处的边界条件,包括H、E、B、D四个矢量的变化规律。在理想导体中,由于电导率极高导致电场几乎消失,磁场保持不变,而在理想绝缘体中,电场、磁场和电磁矢量均连续。这些条件对于理解和解决电磁问题至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电磁场的边界条件
当不同的媒质接触时,其相邻的边界区域上电磁矢量会发生变化,即微分形式失效,需要利用积分形式,针对这类情况对边界的微分形式单独做出推导。

H的推导
由麦克斯韦方程组中:
∮ c H ⋅ d l = ∫ s J ⋅ d S + ∫ s ∂ D ∂ t ⋅ d S \oint _{c}H\cdot dl=\int _{s}J\cdot dS+\int _{s}\frac{\partial D}{\partial t}\cdot dS cHdl=sJdS+stDdS
对分界线上一小矩形环路应用该定理,可得到:
e n × ( H 1 − H 2 ) = J s e_{n}\times (H_{1}-H_{2})=J_{s} en×(H1H2)=Js
即当分界面上有电流流过时,分界面两端的H不连续。若其电导率为有限值,此时 J s J_{s} Js趋近于零,这时两侧H连续

E的推导
由麦克斯韦方程组中:
∮ c E ⋅ d l = − ∫ s ∂ B ∂ t ⋅ d S \oint _{c}E\cdot dl=-\int_{s}\frac{\partial B}{\partial t}\cdot dS cEdl=stBdS
取上述的小矩形区域应用该定理可以得到两侧E一定连续

B的推导
由麦克斯韦方程组中:
∮ s B ⋅ d S = 0 \oint _{s}B\cdot dS=0 sBdS=0
取上述的小圆柱区域应用该定理可以得到两侧B一定连续

D的推导
由麦克斯韦方程组中:
∮ s D ⋅ d S = ∫ v ρ d V \oint _{s}D\cdot dS=\int _{v}\rho dV sDdS=vρdV
取上述的小圆柱区域应用该定理可以得到:
e n ⋅ ( D 1 − D 2 ) = ρ s e_{n} \cdot (D_{1}-D_{2})=\rho _{s} en(D1D2)=ρs
即只要分界面上没有自由电荷,D连续,若有自由电荷则不连续。

理想导体中的电磁状态
因为
J = σ E J=\sigma E J=σE
理想导体中电导率为无穷大,所以E为无穷小
所以D为无穷小
所以 ∂ B ∂ t \frac{\partial B}{\partial t} tB为无穷小
所以B和H均不变化
所以理想导体中不存在电场,只可能有不变的磁场

若其内部电流时变,则BEHD均为0,考虑其表面的状态:
e n × H 1 = J s e_{n}\times H_{1}=J_{s} en×H1=Js
e n ⋅ B 1 = 0 e_{n}\cdot B_{1}=0 enB1=0
e n × E 1 = 0 e_{n}\times E_{1}=0 en×E1=0
e n ⋅ D 1 = ρ s e_{n}\cdot D_{1}=\rho_{s} enD1=ρs
即电场在切向上没有分量,只有法线方向
磁场在法向上没有分量,只有切线方向

理想绝缘体中的电磁形态
由于理想介质中没有自由电子,所以Js和 ρ s \rho_{s} ρs均为0。所以
e n ⋅ ( D 1 − D 2 ) = 0 e_{n} \cdot (D_{1}-D_{2})=0 en(D1D2)=0
e n ⋅ ( B 1 − B 2 ) = 0 e_{n}\cdot (B_{1}-B_{2})=0 en(B1B2)=0
e n × ( E 1 − E 2 ) = 0 e_{n}\times (E_{1}-E_{2})=0 en×(E1E2)=0
e n × ( H 1 − H 2 ) = 0 e_{n}\times (H_{1}-H_{2})=0 en×(H1H2)=0
即全部连续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值