电磁场的边界条件
当不同的媒质接触时,其相邻的边界区域上电磁矢量会发生变化,即微分形式失效,需要利用积分形式,针对这类情况对边界的微分形式单独做出推导。
H的推导
由麦克斯韦方程组中:
∮
c
H
⋅
d
l
=
∫
s
J
⋅
d
S
+
∫
s
∂
D
∂
t
⋅
d
S
\oint _{c}H\cdot dl=\int _{s}J\cdot dS+\int _{s}\frac{\partial D}{\partial t}\cdot dS
∮cH⋅dl=∫sJ⋅dS+∫s∂t∂D⋅dS
对分界线上一小矩形环路应用该定理,可得到:
e
n
×
(
H
1
−
H
2
)
=
J
s
e_{n}\times (H_{1}-H_{2})=J_{s}
en×(H1−H2)=Js
即当分界面上有电流流过时,分界面两端的H不连续。若其电导率为有限值,此时
J
s
J_{s}
Js趋近于零,这时两侧H连续
E的推导
由麦克斯韦方程组中:
∮
c
E
⋅
d
l
=
−
∫
s
∂
B
∂
t
⋅
d
S
\oint _{c}E\cdot dl=-\int_{s}\frac{\partial B}{\partial t}\cdot dS
∮cE⋅dl=−∫s∂t∂B⋅dS
取上述的小矩形区域应用该定理可以得到两侧E一定连续
B的推导
由麦克斯韦方程组中:
∮
s
B
⋅
d
S
=
0
\oint _{s}B\cdot dS=0
∮sB⋅dS=0
取上述的小圆柱区域应用该定理可以得到两侧B一定连续
D的推导
由麦克斯韦方程组中:
∮
s
D
⋅
d
S
=
∫
v
ρ
d
V
\oint _{s}D\cdot dS=\int _{v}\rho dV
∮sD⋅dS=∫vρdV
取上述的小圆柱区域应用该定理可以得到:
e
n
⋅
(
D
1
−
D
2
)
=
ρ
s
e_{n} \cdot (D_{1}-D_{2})=\rho _{s}
en⋅(D1−D2)=ρs
即只要分界面上没有自由电荷,D连续,若有自由电荷则不连续。
理想导体中的电磁状态
因为
J
=
σ
E
J=\sigma E
J=σE
理想导体中电导率为无穷大,所以E为无穷小
所以D为无穷小
所以
∂
B
∂
t
\frac{\partial B}{\partial t}
∂t∂B为无穷小
所以B和H均不变化
所以理想导体中不存在电场,只可能有不变的磁场
若其内部电流时变,则BEHD均为0,考虑其表面的状态:
e
n
×
H
1
=
J
s
e_{n}\times H_{1}=J_{s}
en×H1=Js
e
n
⋅
B
1
=
0
e_{n}\cdot B_{1}=0
en⋅B1=0
e
n
×
E
1
=
0
e_{n}\times E_{1}=0
en×E1=0
e
n
⋅
D
1
=
ρ
s
e_{n}\cdot D_{1}=\rho_{s}
en⋅D1=ρs
即电场在切向上没有分量,只有法线方向
磁场在法向上没有分量,只有切线方向
理想绝缘体中的电磁形态
由于理想介质中没有自由电子,所以Js和
ρ
s
\rho_{s}
ρs均为0。所以
e
n
⋅
(
D
1
−
D
2
)
=
0
e_{n} \cdot (D_{1}-D_{2})=0
en⋅(D1−D2)=0
e
n
⋅
(
B
1
−
B
2
)
=
0
e_{n}\cdot (B_{1}-B_{2})=0
en⋅(B1−B2)=0
e
n
×
(
E
1
−
E
2
)
=
0
e_{n}\times (E_{1}-E_{2})=0
en×(E1−E2)=0
e
n
×
(
H
1
−
H
2
)
=
0
e_{n}\times (H_{1}-H_{2})=0
en×(H1−H2)=0
即全部连续。