- 博客(3)
- 收藏
- 关注
原创 第四章 朴素贝叶斯(不调库的python实现+《统计学习方法》.pdf评论区免费领取)
3. 处理缺失数据:朴素贝叶斯算法能够有效地处理缺失数据,因为它仅依赖于特征之间的条件概率,可以根据其他可用的特征进行推断。1. 朴素的特征独立假设:朴素贝叶斯算法假设所有特征之间相互独立,这在现实数据中往往不成立,可能导致模型性能下降。5. 适用于文本分类:由于其在高维稀疏数据上的良好表现,朴素贝叶斯特别适用于文本分类问题,如垃圾邮件分类。3. 不适合处理连续特征:朴素贝叶斯算法通常假设特征是离散的,对于连续特征的处理可能需要额外的预处理步骤。它的计算效率高,适用于大规模数据集。
2023-08-03 21:42:58 313
原创 第三章 k-邻近(KNN) + 原理实现(python)(可直接套用) + 评论区有问必答
KNN(K-最近邻)算法是一种常用的基于实例的监督学习算法,用于分类和回归任务。在统计学习方法中,KNN算法属于一类称为“基于实例的学习”或“懒惰学习”(lazy learning)的算法。这种算法不需要显式地训练模型,而是在预测阶段根据训练数据进行实时计算。KNN算法的基本是:对于一个新的输入样本,找到训练数据中与该样本最相似的k个邻居(通常使用欧氏距离或其他距离度量方法来衡量相似性),然后根据这k个邻居的标签来进行分类(对于分类问题)或回归(对于回归问题)。
2023-07-27 15:54:53 60 1
原创 第二章 感知机.(python 代码实现)(《统计学习方法》.pdf可在评论区下载)
本代码主要参考以下博客进行实现并且修改, 增加了对一些代码的注释. 在原有代码的基础上新增模型所求直线.见下图(绿线为由该线生成的现有数据, 红线表示感知机模型预测得到的直线).感知器模型主要用于二分类, 具体的模型、策略、算法,见统计学习方法第二章有详细介绍, 这里只进行代码实操的展示.
2023-07-21 17:36:42 156 4
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人