- 博客(16)
- 收藏
- 关注
原创 swin transformer 模块理解
前言【个人学习笔记记录,如有错误,请指正】配置文件使用 swin_small_patch4_windows7_224.yaml 文件,batch_size = 4# 一、Patch Embedding【Patch embedding】其实就是将输入的 224 * 224 大小的图像,经过【卷积】和【LayerNorm】操作,将图像缩放为 56 *56 大小的特征图。然后将特征图reshape 为 (4, 3136, 96)形状,这里的 4 为【batch_size】,3136 = 56*56,.
2022-01-12 15:17:30
4251
原创 【目标检测】 IOU
前言IOU 即 intersection voer union,原来是一种评估两个集合之间的相似度的方法。一、IOU给定两个集合 A 和 B,IOU可以表示为:上面说到 IOU 是评估两个集合之间相似度的一种方法。在目标检测中,将目标框和预测框都当做像素点的集合,这样就可以使用 IOU 来评估两个框的相似度。这个示意图应该更好理解目标检测中的IOU:二、代码这里给出的代码就是计算两个框之间 IOU 的代码def box_iou(boxes1, boxes2): """计算两个锚.
2022-01-07 17:13:00
2514
原创 【目标检测】锚框
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、锚框二、代码总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、锚框理解锚框之前,我们需要理解当前主流的目标检测算法,目前主流的目标检测算法都是基于【锚框】的。那么为什么目标检测算法需要基于【锚框】?个人理解:在一个图像中,被检测的目标的位
2022-01-07 15:56:17
4703
原创 YOLOV5 网络模块解析
前言【个人学习笔记记录,如有错误,欢迎指正】YOLO-V5 代码仓库地址:https://github.com/ultralytics/yolov5一、Conv 模块介绍各个模块前,需要介绍 YOLOV5 中的最基础 Conv 模块。class Conv(nn.Module): def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padd.
2022-01-05 12:45:28
10189
2
原创 YOLOV5 网络结构 yaml 文件参数理解
对 YOLOV5 代码中解析模型部分代码进行理解。提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、ymal 文件理解1.模型存在地址2. yaml 内容理解1.parameters2.anchors3.backbone、head二、模型解析补充:模型 yaml 文件中第四参数解释总结前言【个人学习笔记记录,如有错误,欢迎指正】YOLO-V5 代码仓库地址:https://github.com/ultralytics/yolov5一、ymal 文件理解1.
2022-01-02 23:33:48
14979
8
原创 YOLOV5训练自己数据集
系列文章目录使用 YOLOV5 训练自己数据集例程前言【个人学习笔记记录,如有错误,欢迎指正】YOLO-V5 代码仓库地址:https://github.com/ultralytics/yolov5一、环境配置这里在 Windows 下跑的代码!!!这里不介绍环境配置,如果需要文档,请留言。二、需注意的配置参数介绍在 train 脚本中,找到 parse_opt 函数。parser.add_argument('--weights', type=str, default=ROOT
2022-01-02 11:18:42
2660
原创 Mosaic数据增强
YOLO-V5 代码中数据增强代码理解对 u 版 yolo-v5 中的 load_mosaic 代码的理解。前言【个人学习笔记记录,如有错误,欢迎指正】YOLO-V4 论文地址:https://arxiv.org/pdf/2004.10934.pdfYOLO-V5 代码仓库地址:https://github.com/ultralytics/yolov5一、Mosaic 数据增强是什么?在 YOLO-V4 论文中提到:Mosaic 数据增强是一种新的混合4幅图像的数据增强方法,该方法参考了
2022-01-01 20:09:25
10235
8
原创 【神经网络】transforms 数据预处理
torchvision 中 transforms 的使用常见代码书写from torchvision import transformsdata_transform = {"train": transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(),
2021-12-31 11:02:49
1370
原创 使用OpenCV中的haar级联分类器实现人脸识别
haar级联分类器haar级联分类器的下载方法,不知道的可以看一下代码实现# 导入模块import cv2#加载一张待检测的人脸(人脸歪着可能检测不到)img = cv2.imread('face.jpg')# xml加载有两种方法# 加载人脸检测的xml(第一种方法)face_cascade = cv2.CascadeClassifier() # 先实例化一个对象# 这里是你的xml存放路径!!!(这个是加载人脸识别的引擎)face_cascade.load('G:\Anacond
2020-11-07 20:28:54
2515
原创 opencv中haar级联分类器的所有XML下载
haar级联分类器下载方法一:OpenCV的GitHub官方下载网址:https://github.com/opencv/opencv/tree/master/data人脸识别和眼睛识别之类的xml文件(找不到地方的看左上角路径):下载方法二:百度网盘链接:https://pan.baidu.com/s/1CTWjHzZJfkdEXZGMkp_CMQ提取码:81p4下载后,解压,人脸识别和眼睛识别在这个文件夹中...
2020-11-07 19:50:12
10156
原创 python代码实现简单人脸检测
实现环境opencv+face_recognitionopencv的安装,网上有很多,都可以搜到。face_recognition的安装face_recognition 这个包的安装可以看我的另一篇博客:win10环境下anaconda中face_recognition 的安装代码实现# 导入模块import cv2import face_recognition# 导入图片,需要在上面画出人脸框img = cv2.imread('1.jpg')# 还是导入刚刚的图片face_im
2020-11-06 17:44:58
408
1
原创 win10环境下anaconda中 face_recognition 的安装
我的安装环境环境: windows10, Anaconda,python 3.6 因为想在jupyter notebook下面使用,直接装这个库是没有成功,基本上没人能一次成功,反正我不是。心累呀第一: 安装 VS 2019安装这个库之前,我根据错误提示安装了VS 2019,安装这个好像是因为dlib这个库需要环境什么之类的 ,vs里面我还安装了几个c++和python的环境!!!(反正我也不知道需要安装那一个环境)第二:CMD下面继续安装然后,通过cmd进入我的Anaconda文件夹
2020-11-06 17:21:23
1123
1
原创 anaconda中通过pytesseract识别中文字符
使用pytesseract识别中文字符环境的安装可以参考:https://editor.csdn.net/md/?articleId=109255325首先,需要下载相应的数据集,可以自行搜索官网,下载chi_sim.traineddata链接:百度网盘:链接:https://pan.baidu.com/s/1Z79jcrMwumlDHEXRyk82eg提取码:pxwh将这个数据集放入安装的Tesseract-OCR\tessdata中我使用的是anaconda安装。然后就是几行代码实现
2020-10-31 12:25:15
1030
原创 捕获摄像头的帧
直接开始代码import cv2# 指定读取摄像头的视频帧cameraCapture = cv2.VideoCapture(0)# 帧速率fps = 30# 帧大小size = (int(cameraCapture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cameraCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)))# VideoWriter_fourcc: 指定编解码器# 实例化一个写入视频对象、并指定参数
2020-10-25 13:42:33
381
原创 通过python-opencv模块实现视频帧转为图片并保存
实现:读取视频的一帧图像并保存为图片# 导入opencv包import cv2# 实例化一个类# VideoCapture('视频路径+名称')cap = cv2.VideoCapture('1.mp4')# 通过上面实例的对象调用read()函数# read():两个返回值:# 返回值1:是否成功读取图片 True 或者 False# 返回值2:图片success, frame = cap.read()# 通过imwrite函数写入到文件夹cv2.imwrite('1.jp
2020-10-25 11:57:55
1376
1
原创 pytesseract和tesseract的安装包下载
opencv学习之OCRtesseract.exe的下载及安装介绍:下载地址:网盘下载地址:安装指导:1、双击.exe文件,之间点击下步即可,注意安装的环境路径!!!2、将安装的环境路径添加到windows的系统环境中,最好在用户变量的path中和系统环境的path中都做好添加。测试安装是否成功:win+R 打开cmd:输入命令:tesseract -v系统会输出版本信息即表示安装成功。pytesseract的安装说明1、python官网下载:2、百度网盘下载:3、python环境下的安装:4、anacon
2020-10-24 10:54:44
3766
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人