模拟退火算法之旅行商(TSP)问题matlab实现
关于模拟退火算法的理论部分,小编就不多做赘述,请看下图(如有问题请百度):
话不多说,请看例题:
一位旅行者从出发点(200,200)出发,要求经过30个目标点,并且每个点只能经过一次,最终经过所有点后回到起点。 要求:为旅行者制定一条最短路径。
下面是利用模拟退火算法求TSP问题的代码:
由于小编比较懒,不想挨个敲坐标,就利用matlab中rand()函数自动生成30个点的坐标。如果你有坐标,换成自己的坐标就行了。
生成坐标代码如下:
x=randi([0,150],30,1);
y=randi([0,120],30,1); %%%一时找不到数据,就自动生成了三十个坐标点(xi,yi),i=1,2...,30;
sj0=[x,y];
ss0=[200,200]; %%%出发点选取(100,100);
sj=[ss0;sj0;ss0]; %%%将出发点加在30个点的开始和结束;
模拟退火求TSP问题的matlab源码
%%%(1)计算各点之间的距离,存储于距离矩阵d中
d=zeros(length(sj)); %%%距离矩阵初始化;
for i=1:length(sj)-1
for j=i+1:length(sj)
d(i,j)=sqrt((sj(i,1)-sj(j,1))^2+(sj(i,2)-sj(j,2))^2);
end
end
d=d+d';
%%%(2)求一个较好的初始解
path=[]; %%%路线初始化;
long=inf; %%%路线长度初始化;
rand('state',sum(clock));
for j=1:100000
path0=[1,1+randperm(length(sj0)),length(sj)];
temp=0;
for i=1:length(sj)-1
temp=temp+d(path0(i),path0(i+1));
end
if temp<long
path=path0;
long=temp;
end
end
%%%(3)退火过程
L=50000;
at=0.999; %%%降温系数
T=100; %%%初始温度
e=0.1^30; %%%终止温度
long_temp=[];
m=0;
for k=1:L
c=1+randperm(length(sj0),2);
c=sort(c);
c1=c(1);
c2=c(2);
df=d(path(c1-1),path(c2))+d(path(c1),path(c2+1))-d(path(c1-1),path(c1))-d(path(c2),path(c2+1));%%%代价函数增量
if df<0 %%%接受准则
path=[path(1:c1-1),path(c2:-1:c1),path(c2+1:length(sj))];
long=long+df;
elseif exp(-df/T)>=rand %%% 概率接受
path=[path(1:c1-1),path(c2:-1:c1),path(c2+1:length(sj))];
long=long+df;
end
t=0;
for i=1:length(sj)-1
t=t+d(path(i),path(i+1));
end
long_temp=[long_temp,t];
T=at*T;
if T<e
break;
end
m=m+1;
end
path;
long
subplot(2,1,1)
xx=sj(path,1);
yy=sj(path,2);
plot(xx,yy,'-*')
subplot(2,1,2)
plot(long_temp,'-')
总结:小编通过对算法和代码进行多次运行。对算法进行分析,小编个人看法,模拟退火算法在求解TSP问题上有许多优势,但是,在模拟退火过程中,由于新的状态完全依赖于上一个状态,并且在新状态接受过程中,需要满足接受概率。因此,对于同一个问题,每次运行的结果也略有不同。同时,降温速度的快慢,需要具体情况具体把握。
就本文的问题欢迎感兴趣的小伙伴私聊,同时,小编存在的问题欢迎大家随时指正。最后,喜欢小编的小伙伴点个赞,加个关注吧!小编将持续更新