- 博客(5)
- 收藏
- 关注
原创 筛选过滤含有大量空白区域的数据集影像
最近下载美国马萨诸塞州道路数据集后发现训练集中有大量空白区域,参考使用该数据集的论文,均对训练集进行挑选过滤,于是写此代码过滤含有大量空白区域的数据如图筛选前筛选后代码部分如下代码注释掉的部分是为了保存影像所对应的标签,如果有需要的同学可以取消注释。使用时需要输入影像路径和过滤后保存的路径,空白阈值根据不同数据集的具体情况可以自己调整,我这里使用的10%,空白区域超过10%的影像将被过滤掉。import osimport cv2import numpy as npimport shuti
2022-04-01 18:34:37 1043 5
原创 结合残差结构的Res-Unet及其代码实现
本博客主要为代码实现的小伙伴提供模板,具体的原理已经有好多文章啦,所以在这里我也就不啰嗦啦,只作简单介绍!1.残差结构1.1 残差单元与普通网络的串行结构相比,残差单元增加了跳跃映射,将输入与输出直接进行相加,补充卷积过程中损失的特征信息,这点与U-net的跳跃连接结构有点类似,不过Res中的跳跃连接做的是Add操作,而U-net的跳跃连接做的是Concatenate操作,还是有本质的不同,残差单元如图所示:1.2 残差家族根据层数的不同ResNet有以下的伐木累由图中可以看出ResNet
2021-04-20 17:27:14 15180 14
原创 注意力模型CBAM模块的Keras代码实现
1.啥是CBAM?CBAM就是结合了通道注意力和空间注意力的一种注意力结构,与SE模块相比,多了空间注意力!2.CBAM的结构图如图,整体结构就是先对特征图进行通道注意力加权,然后再进行空间注意力加权操作,很简单。2.1 CBAM的通道注意力模块如图,先对输入特征图Input_feature(H×W×C)分别进行全局平均池化和全局平均池化得到两个向量M(1×1×C)和A(1×1×C),在将这俩分别进行两次全连接操作第一次全连接压缩通道为C/r(r自己调整),第二次全连接扩张通道为C。经过两次全
2021-04-09 11:11:30 5718 20
原创 金字塔池化PPM-Unet的Keras实现
1. 啥是PPM?金字塔池化模型PPM-Pyramid pooling module是以一种特殊的池化模型。通过由多到少的池化,可以有效增大感受野,增大全局信息的利用效率。Pyramid pooling 方法出自 2017CVPR,原文地址https://arxiv.org/pdf/1612.01105.pdf2.PPM的结构下面描述下PPM的过程。原文中采用4种不同金字塔尺度,金字塔池化模块的层数和每层的size是可以修改的。论文中金字塔池化模块是4层,每层的size分别是1×1,2×2,3×
2021-03-17 09:43:39 3757 12
原创 语义分割准确率、精确率、召回率、F1值计算代码
语义分割准确率、精确率、召回率、F1值计算使用提示:需要opencv库只需将预测结果文件路径与标签路径改一下版权专属小轩import cv2import numpy as npimport os#预测结果路径pred_path = r'D:\experiment\u-net\predict'#标签路径lab_path = r'F:\dataset\LEVIR-CD-deal\test\label'def tpcount(imgp,imgl): n = 0 for
2021-03-08 15:19:39 5902 30
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人