前言
本文仅为记录本人(遥感专业学生)目前所接触和使用过的臭氧数据及其特点,可能存在错漏,欢迎指正!
一、站点数据
- 发布者:中科院地理所
- 时间范围:2013年-至今(可能近2-3个月的数据未及时更新)
- 气象站点:全国1400多个站
- 数据内容:每天每小时空气质量监测数据*(逐日逐小时级数据)*
- 臭氧浓度单位:μg/m3,是常见的浓度单位
- 数据格式:
注:该网站需要登录注册才能下载
- 【使用感受主观评价】
- 数据质量较好,长时序、多站点数据,读取处理也比较方便(用MATLAB、Python等批处理即可),可以进行臭氧逐小时预报/预测等相关研究 。
- 数据本身主要反映了该站点及其周边附近的臭氧信息(空间相似性),但是国内东部站点比西部站点多、密,其空间代表性、准确性更强,西部较弱,如果要做空间插值获取整片区域的栅格数据,西部地区结果可能不太理想。适合做小尺度研究。
二、卫星遥感监测数据
1. Sentinel-5P TROPOMI
-
下载网站:Sentinel-5P数据下载官网
-
数据检索:(例)
· 可以自行勾画目标区域
· 选择所需时间范围和数据类型(L2_O3_TCL代表对流层臭氧柱含量)即可
· 缺点是官网下载速度有限,如果要下载处理大量的数据效率不高,因此推荐使用下面提到的GEE处理。 -
GEE(Google Earth Engine)
(用过GEE之后就再也不想下载处理了哈哈哈)(但需要科学上网+申请Google账号)
GEE在2017年横空出世,它向用户提供了一个云处理平台,省去了亲自下载数据的步骤,只需要在GEE中直接根据代码调用目标影像数据集来处理,非常快速又高效,推荐大家使用!
(国内目前类似的有阿里的AI Earth,是2022年推出的,具体可以使用“开发者模式”,和GEE界面、功能都有些相似,后面有机会可以补充)
在GEE上面可以搜索查看数据集信息:
但这里有一个非常坑的点,就是Sentinel-5P TROPOMI的臭氧数据只覆盖了南北纬20°之间的区域(20°N~20°S),这就意味着如果我们想要研究全球或者中国区域,那这个数据集就不合适了(呜呜呜呜,痛失所爱)
- 数据时间范围:2018.1-2021.12 属于历史数据(
后面没有更新好像说是传感器出现问题了?待我求证下 - 空间分辨率:7km
这个数据集空间分辨率属于蛮高的了,如果不是它只覆盖南北纬20°,我一定会用它的呜呜呜
2.Aura OMI/MLS
- 下载来源:Aura-OMI/MLS
- 数据说明:这个数据集是由 J. R. Ziemke处理发布的,数据来源是由Aura卫星搭载的臭氧监测仪(OMI)和微波临边探测仪(MLS)传感器获得的。(计算臭氧柱浓度的原理简而言之是将MLS和OMI仪器获得的数据作差,得出对流层臭氧柱浓度数据(可视为近地面臭氧浓度))
详细信息建议阅读一下作者文章原文 - 空间分辨率:1.25°(经向)×1°(纬向),大概11km的空间分辨率
- 空间范围:南北纬60°之间区域(60°N~60°S)
(非常好,覆盖范围很广!) - 时间分辨率:逐月(月均数据)
- 时间范围:2004.10-2020.12
(之后没有更新,好像停止生产了) - 臭氧浓度单位:Dobson unit,DU(1DU等于在一个标准大气压、15℃时单位面积上0.001厘米的臭氧层厚度)
- 数据处理:
(有点麻烦)数据下载网站提供了IDL处理代码,可以将原始txt文件转为netCDF格式;之后我又用Python将netCDF格式批处理转为了TIFF数据,这样方便后续提取、制图、计算。
- 【使用感受主观评价】
(1)卫星遥感数据覆盖范围比较广,能提供大范围臭氧的时空分布信息,而且能反映整个大气层(对流层、平流层等)的臭氧含量(浓度/柱浓度),但是时间序列可能比较短,适合做大尺度研究。
(2)上面两个遥感数据集中,我最终使用了第二个OMI/MLS的对流层臭氧柱浓度。数据可信度还是很高的,全球臭氧浓度季节性变化规律明显,变化趋势与其他学者研究相符,可以使用。
但是数据自2021年就没更新了,大家按需取用~
另外,由于这个数据是对流层柱浓度数据,我可能受思维限制总觉得怪怪的,待我后面求证
三、再分析数据
- 利用数据同化系统,融合了地基观测、卫星遥感、气象资料等,考虑因素全面,数据集多,但数据质量参差不齐
CAQRA dataset
- 数据下载:CAQRA数据集
- 数据说明:该数据集全称为【Chinese Air Quality Reanalysis dataset】(中国高分辨率大气污染再分析数据集)。原论文地址在此,大家有需要可以查看。该数据集包括了2013年1月1日00时-2019年12月31日23时 逐小时级的数据(7年 x 365天 x 24小时),比较庞大,近1TB,数据格式是.nc即netCDF格式。在数据下载网址上面,数据生产者已经给出详细的数据说明,截图如下:
这个数据集中包括了经纬度、臭氧浓度(单位是μg/m3),还有一些其他的气体(PM2.5,PM10,SO2,NO2,CO)浓度数据,空间分辨率是15km。该数据集的制作方法大家可以阅读论文原文。
此外需要注意的是,该数据集整体是Lambert等角投影坐标系,使用的时候可能得注意投影坐标系转换。这个问题我当时处理时卡了很久,后来多亏师兄指点,我才茅塞顿开哈哈哈。详细处理方法之后有时间了再另起一文介绍吧
- 【使用感受主观评价】
(1)CAQRA数据集是针对中国区域生产的,所以很适合用来做国内研究,而且时间分辨率很高,只是可用范围只有2013-2019年,时效性不是很好,不知道作者后面还会不会继续生产。
(2)数据格式比较便于后续批量处理,我个人认为挺好用的,数据质量也不错;但空间分辨率比较低,15km,适合省级以上的大一点的尺度研究。
四、模式数据
- 种类多样,适用于未来预测,数据存在不确定性
这个目前还没有用过,等待补充。。。
但之前听老师推荐使用过CMIP6的数据进行未来模拟/预测,奈何当时各种原因就搁置了,,希望之后有机会使用一下这类数据!