- 博客(1850)
- 收藏
- 关注
原创 面向概念漂移的动态自组织映射(SOM)及其在金融风险预警中的效能评估
自组织映射(Self-Organizing Maps),又称Kohonen映射,是由芬兰学者Teuvo Kohonen在20世纪80年代提出的一种无监督神经网络模型。其核心功能是将高维数据空间投影到低维(通常为二维)网格结构中。与传统神经网络依赖标记数据进行训练不同,SOM能够自主学习数据的内在模式而无需预定义标签。
2025-05-21 10:18:58
754
原创 高效处理多维数组:einsum()函数从入门到精通
einsum是NumPy中一个功能强大但常被认为晦涩难懂的函数,用于处理多维数组运算。本文深入介绍了einsum的数学基础、语法结构及其在科学计算中的实际应用。通过爱因斯坦求和约定,einsum能够简洁高效地表达复杂的张量操作,如矩阵乘法、外积、转置等
2025-05-20 10:26:25
3610
原创 5个开源MCP服务器:扩展AI助手能力,高效处理日常工作
本文介绍了五种开源MCP服务器实现,通过MCP服务器,AI能够更好地融入实际工作流程,为构建真正“能干活”的AI应用奠定了基础。
2025-05-19 09:58:35
4214
原创 基于马尔可夫链的状态转换,用概率模型预测股市走势
基于马尔可夫链的股市状态转换模型,为我们提供了一个独特的概率视角来审视市场的短期波动与长期趋势。通过将连续的价格变动离散化为特定状态,并构建状态间的转移概率矩阵,该模型能够量化市场从一种状态迁移到另一种状态的可能性。
2025-05-18 10:38:58
4226
原创 深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0的torch.compile功能显著提升了深度学习模型的性能。本文从实用角度出发,介绍了torch.compile的核心技巧,帮助用户提升开发效率。文章首先将模型划分为三种复杂度类别,分别讨论了直接适配型、需调整适配型和高复杂度调整型的应用场景。接着,分析了训练工作流中可编译的组件,如模型定义、优化器流程、自动微分系统和日志记录功能,并指出了当前尚不完全支持的编译场景。文章还提供了系统化的调试策略,包括跟踪分析与可视化、分层消融测试、问题最小化复现和独立复现环境构建。
2025-05-17 09:35:53
4593
1
原创 RAG-MCP:基于检索增强生成的大模型工具选择优化框架
RAG-MCP框架通过检索增强生成技术,有效解决了大型语言模型(LLMs)在工具选择中面临的提示词膨胀问题。随着工具生态系统的扩展,LLMs需要从大量工具中高效选择最合适的工具,传统方法因提示词膨胀和决策复杂性而受限。RAG-MCP通过构建外部工具索引、查询时检索处理和聚焦提示构建,显著减少了提示词规模,降低了认知复杂度,提升了系统扩展性和计算资源效率。实验表明,RAG-MCP在工具选择准确率和提示词token消耗方面优于传统方法,为AI助手和自主代理的发展提供了重要技术支持。
2025-05-16 09:27:32
4289
原创 SmolDocling技术解析:2.56亿参数胜过70亿参数的轻量级文档处理模型
SmolDocling是由HuggingFace与IBM联合研发的端到端文档转换模型,基于Hugging Face SmolVLM-256M开发,体积仅为2.56亿参数,性能却能与更大规模的视觉模型媲美。
2025-05-15 10:31:16
8689
原创 从零构建知识图谱:使用大语言模型处理复杂数据的11步实践指南
本文将基于相关理论知识和方法构建一个完整的端到端项目,系统展示如何利用知识图谱方法对大规模数据进行处理和分析。
2025-05-14 10:28:50
9977
2
原创 Pandas数据合并:10种高效连接技巧与常见问题
本文系统介绍了在数据分析中使用Pandas库进行数据合并的10种关键技术,帮助解决数据整合中的常见问题。文章详细讲解了基本合并、左连接、右连接、外连接、基于索引连接、多键合并、数据拼接、交叉连接、后缀管理和合并验证等方法的应用场景、技术原理及实用技巧。通过预先验证键的质量、处理缺失值和优化内存使用等步骤,可以显著提高数据合并的效率和准确性。掌握这些技术,能够有效减少调试时间,提升数据分析的质量和洞察力。
2025-05-13 10:26:55
6382
原创 PINN应用案例:神经网络求解热扩散方程高质量近似解
文章探讨了物理信息神经网络(PINN)在求解偏微分方程(PDE)中的应用,特别是针对一维热扩散问题的求解。
2025-05-12 10:29:40
4480
2
原创 PaperCoder:一种利用大型语言模型自动生成机器学习论文代码的框架
机器学习研究领域面临代码缺失和可复现性不足的问题,阻碍了科学进步。为解决这一挑战,研究人员提出了PaperCoder,一种基于大型语言模型的多智能体框架,旨在自动生成机器学习研究论文的代码库。PaperCoder通过规划、分析和生成三个阶段,模拟人类开发流程,将论文转化为结构化的代码实现。实验表明,PaperCoder在自动生成高质量代码方面表现出色,显著优于基线方法,并在人工评估中获得高度认可。其生成的代码库不仅结构清晰,且功能可靠,极大减少了研究人员的工作量。PaperCoder有望提升机器学习研究的可
2025-05-11 09:59:02
4730
4
原创 PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
在神经网络研究中,模型精度与运行效率之间的权衡是一个关键挑战。为解决这一问题,研究人员主要采用模型量化、模型剪枝和知识蒸馏三种策略。其中,模型量化通过将高精度浮点数转换为低精度整数,显著减少内存占用和计算复杂度。量化技术分为训练后量化(PTQ)和量化感知训练(QAT)。PTQ在模型训练后应用,适用于快速原型验证;QAT在训练过程中模拟量化效应,能获得更高准确率但实现复杂度较高。PyTorch提供了Eager模式和FX图模式两种量化实现方式,前者需要手动操作,后者则自动化程度更高。通过这些技术,可以在边缘设备
2025-05-10 09:56:54
4323
原创 ChronosX: 可使用外生变量的时间序列预测基础模型
这篇论文提出了一种简洁有效的方法,通过添加协变量处理能力,显著提升时间序列基础模型的整体性能。尽管评估中使用了较早版本的基础模型(相较于最新版本处于技术劣势),但结果明确表明,经适配器增强的模型在性能上显著优于原始版本。该方法的一个潜在局限性在于适配器需要经过训练—即使是轻量级的训练过程。这在技术上打破了零样本推理的严格定义。在实际应用中任何具有竞争力的零样本模型最终都需要进行某种程度的微调以适应特定场景。
2025-05-09 10:09:48
4018
原创 PyTorchVideo实战:从零开始构建高效视频分类模型
本文展示了如何使用PyTorchVideo和PyTorch Lightning构建视频分类模型的完整流程。通过合理的数据处理、模型设计和训练策略,我们能够高效地实现视频理解任务。希望本文能为您的视频分析项目提供有价值的参考和指导。
2025-05-08 10:03:03
7416
3
原创 基于大型语言模型的高效时间序列预测模型选择
在 AMD 硬件上构建 LLM 推理环境目前仍面临一定技术挑战,尚未达到 NVIDIA CUDA 生态系统的即插即用水平。本文所述的工具链和配置方法,完全可以将现有的 AMD 游戏显卡转化为高效的 AI 推理设备。这种方案不仅在经济性上更具优势,还有助于推动 AI 硬件生态系统的多元化发展。随着 AMD 持续完善 ROCm 平台,以及开源社区对非 NVIDIA 硬件的支持不断增强,基于 AMD GPU 的本地 LLM 部署方案将获得更广泛的应用。
2025-05-08 10:00:07
759
原创 在AMD GPU上部署AI大模型:从ROCm环境搭建到Ollama本地推理实战指南
在 AMD 硬件上构建 LLM 推理环境目前仍面临一定技术挑战,尚未达到 NVIDIA CUDA 生态系统的即插即用水平。本文所述的工具链和配置方法,完全可以将现有的 AMD 游戏显卡转化为高效的 AI 推理设备。这种方案不仅在经济性上更具优势,还有助于推动 AI 硬件生态系统的多元化发展。随着 AMD 持续完善 ROCm 平台,以及开源社区对非 NVIDIA 硬件的支持不断增强,基于 AMD GPU 的本地 LLM 部署方案将获得更广泛的应用。
2025-05-06 09:45:25
4556
原创 防止交叉验证中的数据泄露:提升模型在实际环境中的性能
交叉验证是机器学习中的重要安全机制,但前提是它被正确配置和实施。数据泄露可能会悄无声息地破坏即使是最精心设计的验证策略,导致模型在开发环境表现优异但在实际应用中性能不佳。从测试数据中不当学习的缩放器SMOTE生成的包含测试数据信息的合成样本无意中编码了未来信息的特征工程因数据划分不当导致的类别分布不均应对这些问题需要保持健康的怀疑态度。当模型表现出异常高的准确率时,应抑制立即庆祝的冲动,转而深入调查潜在问题。关键问题是:“模型可能接触了哪些它不应获取的信息?数据处理管道是必要的,而非可选项。
2025-05-05 09:56:57
4541
7
原创 Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
Perforated Backpropagation技术代表了深度学习基础构建模块的重要革新,通过仿生学习机制重塑了人工神经元的计算范式。本文详述的树突增强型神经元不仅从理论上突破了传统线性分类器的局限性,更在实践中展现出显著价值:提升模型精度的同时开辟了高效模型压缩的新途径。实验结果表明,这一技术能够在不同规模的神经网络中产生实质性改进,尤其在BERT等复杂模型中实现高达17%的准确率提升。
2025-05-01 10:42:34
4729
5
原创 加速LLM大模型推理,KV缓存技术详解与PyTorch实现
本文详细阐述了KV缓存的工作原理及其在大型语言模型推理优化中的应用,文章不仅从理论层面阐释了KV缓存的工作原理,还提供了完整的PyTorch实现代码,展示了缓存机制与Transformer自注意力模块的协同工作方式。实验结果表明,随着序列长度增加,KV缓存技术的优势愈发明显,在长文本生成场景中能将推理时间降低近60%。这一技术为优化大模型部署提供了一种无需牺牲精度的实用解决方案,为构建更高效的AI应用奠定了基础。作者:Shubh Mishra。
2025-04-30 10:04:47
5168
2
原创 零训练成本优化LLM: 11种LLM权重合并策略原理与MergeKit实战配置
本文系统介绍了11种先进的LLM权重合并策略,从简单的线性权重平均到复杂的几何映射方法,全面揭示了如何在零训练成本下优化大语言模型性能。这些方法各具特色:Model Soup通过简单加权平均实现模型融合;SLERP保持角度关系确保插值质量;任务算术聚焦方向性信息;TIES-Merging通过修剪减轻参数干扰;Model Stock利用几何特性寻找最佳合并比例;而SCE则专注于消除冲突更新方向。MergeKit工具让这些先进算法变得触手可及,通过简明的YAML配置即可实现复杂的权重融合。
2025-04-29 11:01:22
4133
原创 NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
NoProp研究成果证实了在不依赖全局梯度信息传播的条件下训练深度神经网络的技术可行性。其层间独立学习的特性为模型并行化训练(例如将不同网络层分布到多个计算设备上)提供了新的技术路径。该方法不仅显著降低了训练过程的内存占用,在特定场景下还缩短了模型训练时间,这些特性可能有助于缓解深度学习中的灾难性遗忘等长期存在的挑战性问题。NoProp将深度神经网络的训练过程重新定义为一种迭代式标签去噪任务。
2025-04-28 09:54:49
4648
原创 GenPRM:思维链+代码验证,通过生成式推理的过程奖励让大模型推理准确率显著提升
过程奖励模型(PRMs)作为验证机制在提升大型语言模型(LLMs)性能方面展现出显著潜力。而当前PRMs框架面临三个核心技术挑战:过程监督和泛化能力受限、未充分利用LLM生成能力而仅依赖标量值预测,以及在测试时计算无法有效扩展。针对上述局限,这篇论文提出了GenPRM,一种创新性的生成式过程奖励模型。该模型在评估每个推理步骤前,先执行显式的思维链(Chain-of-Thought, CoT)推理并实施代码验证,从而实现对推理过程的深度理解与评估。
2025-04-27 10:13:29
11305
3
原创 PyTabKit:比sklearn更强大的表格数据机器学习框架
PyTabKit框架通过集成优化的深度学习和梯度提升技术,为表格数据处理提供了一套全新的解决方案。性能提升:经过元级调优的模型默认配置在无需额外调优的情况下,显著优于传统实现,特别是在中等到大型数据集上。开发效率:简化的API设计和优化的默认参数大幅减少了开发周期,使数据科学家能够将更多精力集中在业务理解与模型解释上。资源节约:通过减少或消除繁重的超参数优化需求,PyTabKit有效降低了计算资源消耗,特别适合资源受限的环境。多模型集成。
2025-04-26 10:28:12
4284
原创 SecMulti-RAG:兼顾数据安全与智能检索的多源RAG框架,为企业构建不泄密的智能搜索引擎
SecMulti-RAG 让我们得以一窥下一代企业 AI 助手的面貌——它们不仅强大,而且实用、安全、值得信赖。结合动态内部数据、精选专家见解和广泛的外部知识,实现无与伦比的完整性。采用专用过滤器阻止敏感查询到达外部服务,降低数据泄露风险。利用本地开源 LLM 进行主要生成,有选择地、安全地使用昂贵的外部模型。在生成准确、详细和有用的响应方面显著优于传统 RAG,已在实际评估中得到证明。解决了企业的核心关切——数据隐私、成本控制以及对领域特定准确性的需求。
2025-04-25 10:16:29
4994
1
原创 KG4MM:融合知识图谱与多模态数据预测药物相互作用
知识图谱(Knowledge Graph, KG)作为表示不同实体间复杂关系的有效工具,已得到广泛应用。通过将信息编码为节点(实体)和边(关系),知识图谱简化了关联信息的追踪与分析。用于多模态学习的知识图谱(Knowledge Graphs for Multimodal Learning, KG4MM)借鉴了这一思想,利用知识图谱指导从图像和文本等多模态数据中进行学习。在 KG4MM 框架中,知识图谱充当结构化先验知识,引导模型在训练过程中关注每种数据模态中的关键信息。这种引导机制有助于模型聚焦于图像中最具
2025-04-24 10:10:53
4250
3
原创 CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
CLIMB框架是一种创新的基于聚类的迭代式数据混合自举方法,专为优化LLM预训练数据混合而设计。CLIMB通过自动化数据混合的发现、评估与优化过程,以明确的性能指标为目标改进了大规模预训练效果。通过结合无监督聚类、代理模型训练和性能预测技术,CLIMB能够高效地探索庞大的数据组合空间,无需依赖预定义的领域标签或大量人工干预即可构建最优的领域感知混合策略。实验结果表明,使用CLIMB优化的数据混合训练的350M和1B参数规模模型,在12项推理任务上均达到了当前最先进的性能水平。
2025-04-23 10:09:27
4460
原创 10招立竿见影的PyTorch性能优化技巧,让模型训练速度翻倍
高效PyTorch应用开发的核心在于全面理解并正确应用框架提供的性能优化特性。不同优化技术在不同模型架构和应用场景下效果各异,需要根据具体项目需求进行选择和组合。将这些技术优化与良好的编码实践相结合,是构建高性能、可维护的深度学习系统的基础。正如本文所强调的,“把所有事情都做对比把所有事情都做错要好得多”。通过系统性地应用这些最佳实践,开发者能够充分发挥PyTorch框架的潜力,构建更高效、更可靠的深度学习应用。
2025-04-22 10:26:09
4526
1
原创 SmolVLM:资源受限环境下的高效多模态模型研究
SmolVLM是专为资源受限设备设计的一系列小型高效多模态模型。尽管模型规模较小,但通过精心设计的架构和训练策略,SmolVLM在图像和视频处理任务上均表现出接近大型模型的性能水平,为实时、设备端应用提供了强大的视觉理解能力。
2025-04-21 10:44:00
4113
原创 从零开始用Pytorch实现LLaMA 4的混合专家(MoE)模型
混合专家(MoE)架构的核心思想是通过一组专门化的子网络(称为“专家”)来替代传统 Transformer 模型中密集的前馈网络(FFN)层,并引入一个“路由器”来动态地为每个输入词元(token)选择性地激活一部分专家。这种设计允许模型在保持甚至提升性能的同时,显著降低推理时的计算成本,因为并非所有参数都在处理每个词元时被激活。专家网络(Experts): 这是一组并行的、通常结构相同(例如,标准的前馈网络或门控 MLP)但参数独立的神经网络。每个专家可以被视为在处理特定类型信息或模式方面具有专长。
2025-04-20 10:41:53
4515
1
原创 ReSearch:基于强化学习的大语言模型推理搜索框架
与传统的仅包含文本推理的推理过程相比,ReSearch框架中的推理过程融合了搜索查询与检索结果。系统采用。
2025-04-19 14:26:24
1461
原创 2025年GitHub平台上的十大开源MCP服务器汇总分析
随着人工智能生态系统的迅速演进,模型与工具之间的无缝通信已成为技术发展的关键环节。在这一背景下,正日益凸显其战略价值。这些服务器作为连接AI与现实世界的技术桥梁,实现了人工智能模型与现实应用程序、API接口、数据库及自动化工作流程之间的有效交互,从根本上扩展了AI代理的功能范围与应用边界。本文深入分析GitHub平台上十个具有代表性的MCP服务器项目,这些技术方案正在重塑AI系统与外部环境的集成方式。
2025-04-18 09:44:28
5521
1
原创 Crawl4AI:为大语言模型打造的开源网页数据采集工具
Crawl4AI作为专为大语言模型设计的开源网页数据采集工具,通过突破传统API限制,实现了对实时网页数据的高效获取与结构化处理。其异步架构和浏览器导航技术能够处理动态内容、应对验证机制,并支持多种输出格式。无论是RAG应用、市场分析还是新闻聚合,Crawl4AI都为大语言模型提供了可靠的实时数据通道,简化了从数据获取到AI应用的整个工作流程,是AI系统获取开放网络信息的理想解决方案。
2025-04-17 09:45:38
4734
1
原创 Triton入门教程:安装与编写和运行简单Triton内核
Triton代表了GPU编程领域的重要技术进步,特别是在深度学习应用方面。它提供了在可访问性和性能之间的平衡方案,有效弥合了高级框架(如PyTorch)的易用性与底层CUDA编程的性能优势之间的技术鸿沟。性能接近CUDA水平,但编程体验显著简化(基于Python,无需显式线程管理)自动优化内存访问模式、共享内存使用和指令向量化与PyTorch生态系统无缝集成比编写CUDA扩展需要更低专业知识门槛为快速迭代开发性能关键内核提供灵活平台主要针对NVIDIA GPU架构。
2025-04-16 09:56:05
10582
原创 用离散标记重塑人体姿态:VQ-VAE实现关键点组合关系编码
向量量化自编码器(VQ-VAE)为学习离散且紧凑的潜在表示提供了强大的框架,使高效压缩和高质量重建成为可能。然而,这类模型在训练过程中可能面临"码本崩溃"问题,即只有少数码本嵌入被实际使用,从而限制了模型的表达能力。通过实验验证,采用在引入向量量化之前独立预训练编码器的策略,或结合承诺损失调整与EMA更新等技术,可以有效缓解这一问题,确保码本的充分利用和模型的稳健学习。这种基于离散标记的姿态表示方法捕获了关键点之间的结构化关系,为后续的姿态分析和理解任务提供了新的可能性。作者:Noahmuthler。
2025-04-15 10:11:30
4151
1
原创 MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
MCP和A2A协议代表了先进AI系统新兴架构中的基础构建模块。MCP解决了AI模型与其运行环境中所需工具、数据和系统的连接这一技术挑战,而A2A则解决了同样关键的跨平台、跨供应商AI代理协同工作的标准化问题。这两种协议共同构成了AI系统的技术基础,使系统能够既与环境深度集成,又能执行复杂的协作任务。深入理解MCP和A2A各自技术定位的组织将更有能力构建稳健、灵活的AI技术生态系统,进而推动技术创新并创造商业价值。
2025-04-14 10:00:39
4304
原创 从零实现基于扩散模型的文本到视频生成系统:技术详解与Pytorch代码实现
检查变量是否存在(非None)# 空操作函数,接受任意参数但不执行任何操作pass# 检查整数是否为奇数# 返回值或默认值return val# 数据加载器循环迭代器yield data# 将总数划分为指定大小的组return arr# 生成概率掩码else:# 检查列表或元组是否只包含字符串。
2025-04-12 10:44:11
9491
10
原创 18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
2025-04-11 09:53:37
4211
原创 PyTorch CUDA内存管理优化:深度理解GPU资源分配与缓存机制
环境变量如允许开发者微调缓存分配器的行为。通过这一配置,可以设置最大缓存大小限制,并根据特定模型和训练范式调整分配策略。详细信息可参考PyTorch官方文档。对于更高级用户,PyTorch支持集成自定义CUDA内存分配器。然而,这需要对CUDA和PyTorch内部机制有深入理解,通常用于针对特定应用场景的专门优化解决方案。高效GPU内存管理是构建可扩展、高性能深度学习系统的基础要素。虽然增加GPU数量是一种解决方案,但精通内存优化的开发者应着重于充分发挥现有硬件资源的潜力。
2025-04-10 10:56:32
4600
原创 LangChain RAG入门教程:构建基于私有文档的智能问答助手
在深入技术实现前,需要理解RAG技术的核心价值。传统语言模型如GPT-4尽管功能强大,但其知识库受限于训练数据,无法有效访问新增信息或特定领域文档。检索系统:从文档集合中精确定位相关信息生成机制:基于检索到的上下文信息生成准确、相关的响应这种结构设计的优势在于能够构建一个基于特定知识库的AI问答系统,有效降低了幻觉(hallucination)现象,显著提升了回答的事实准确性。通过本文所述方法,已成功构建了一个能够基于特定文档集合回答问题的完整RAG系统。
2025-04-09 10:00:32
3864
原创 基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
本文详细阐述了基于LlamaIndex构建CodeAct Agent的完整技术方案,从代码执行环境的构建、工作流事件的定义到完整Agent的实现。通过将代码生成与执行能力无缝集成到对话式AI系统中,CodeAct Agent代表了一种新型交互范式,能够将自然语言指令转化为可执行的计算逻辑。这一技术架构的核心价值在于其可扩展性和灵活性。开发者可以根据特定应用场景定制执行环境、函数库和安全策略,从而构建出专用的智能工具。专业领域软件开发辅助工具数据科学探索与可视化系统教育领域的编程学习平台。
2025-04-08 09:53:13
4223
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人