题目:
X星球特别讲究秩序,所有道路都是单行线。
一个甲壳虫车队,共16辆车,按照编号先后发车,夹在其它车流中,缓缓前行。
路边有个死胡同,只能容一辆车通过,是临时的检查站,如图所示。
X星球太死板,要求每辆路过的车必须进入检查站,也可能不检查就放行,也可能仔细检查。
如果车辆进入检查站和离开的次序可以任意交错。那么,该车队再次上路后,可能的次序有多少种?
为了方便起见,假设检查站可容纳任意数量的汽车。
显然,如果车队只有1辆车,可能次序1种;2辆车可能次序2种;3辆车可能次序5种。
分析:可以运用递归来对题目进行分析,这里运用递归需要搞清楚两件事,参数和出口。找对参数是此题相对比较重要的步骤,我们假设这里等待入站的车辆为a,在站中的车辆为b,等待入站车辆与在站中的车辆存在一定关系,即分为两种情况,①车辆进入检查站,则a-1,b+1, ②车辆出检查站,则a不变,b-1。
fun(a-1,b+1) + fun(a,b-1)
那么什么时候是出口呢?我们想,等待入站车辆如果没有了,自然车队顺序也就一定了,即当 a=0 时,还有一种情况,就是当b=0,车辆会入站一辆,即 a-1,b为1。
代码如下
if(a==0)
return 1;
if(b==0)
return fun(a-1,1);
所以完整的java代码如下:
package 算法.递归;
public class Demo2 {
public static void main(String[] args) {
System.out.println(fun(16,0));
}
private static int fun(int a, int b) {
if(a==0)
return 1;
if(b==0)
return fun(a-1,1);
return fun(a-1,b+1) + fun(a,b-1);
}
}