题目
假设有两种微生物X和Y
X出生后每隔3分钟分裂一次(数目加倍)
Y出生后每隔2分钟分裂一次(数目加倍)
一个新出生的X,半分钟之后吃掉1个Y,且从此开始每隔1分钟吃掉1个Y
已知新出生的X=10,Y=89,求60分钟后Y的数目。若X=10,Y=90呢?
本题的要求就是写出这两种初始条件下,60分钟后Y的数目。
题目的结果令你震惊吗?这不是简单的数字游戏!
真实的生物圈有着同样脆弱的性质!
也许因为你消灭的那只Y就是最终导致Y种群灭绝的最后一根稻草!
思路
首先进行模拟,x和y之间肯定是有规律的
我们能够发现x类型细菌每隔3分钟分裂一次,处了第一次在0.5秒的时候吃了一次Y,另外都稳定在1分钟吃一次Y,根本不需要去管什么新生还是非新生,而Y每隔2分钟分裂一次。
现在十分明了,我们只需要用程序模拟这个分裂就可以了,为了方便处理0.5这个时间,我们把整个时间×2,这样就可以避免小数的影响了。
上代码
/*
假设有两种微生物X和Y,
X出生后每隔3分钟分裂一次(数目加倍)
Y出生后每隔2分钟分裂一次(数目加倍)
一个新出生的X,半分钟之后吃掉1个Y,且从此开始每隔1分钟吃掉1个Y
已知新出生的X=10,Y=89,求60分钟后Y的数目。若X=10,Y=90呢?
本题的要求就是写出这两种初始条件下,60分钟后Y的数目。
题目的结果令你震惊吗?这不是简单的数字游戏!
真实的生物圈有着同样脆弱的性质!
也许因为你消灭的那只Y就是最终导致Y种群灭绝的最后一根稻草!
*/
#include<iostream>
using namespace std;
int main()
{
long long x=10,y=89;
for(int t=1;t<=120;t++){
if(t%2){//x吃y
y=y-x;
}
if(t%6==0){//x分裂
x=2*x;
}
if(t%4==0){
y=2*y;
}
}
cout << x << endl;
cout << y << endl;
system("pause");
return 0;
}
运行结果:
输出的负数表示Y被吃光了~