密码学之生日攻击 离散对数问题求解 python实现

本文介绍了密码学中的生日攻击原理,它用于解决离散对数问题。通过概率论中的生日问题解释了生日攻击的高碰撞概率,并提供了一个Python实现,展示如何在模p的离散对数问题中寻找解决方案。通过生成两个列表并检测重复项,找到了离散对数的解。

生日攻击

离散对数问题( DLP ) 给定素数 p, α\alphaα, β\betaβ 是模 p 非零的整数,令β=αxmod  p\beta = \alpha^x\mod pβ=αxmodp ,则求 x 的问题称为离散对数问题。

生日攻击是一种密码攻击,它利用概率论中生日问题背后的数学原理。攻击取决于随机攻击中的高 碰撞 概率和固定置换次数( 鸽巢原理 )。通过生日攻击,可以在2n=2n/2\sqrt{2^n} = 2 ^ {n / 2}2n =2n/2中找到哈希函数的碰撞碰撞,其中2n2 ^ {n}2n 是经典的预测阻力安全。生日攻击是用来指代一类暴力攻击的名称。它得名于一个令人惊讶的结果:在一个23人的群体中,两个或更多人拥有相同生日的概率大于1/2;这种结果被称为生日悖论。

生日问题

例如,考虑这样一个场景:一个班级有30名学生(n = 30)的教师要求每个人的生日(为简单起见,忽略闰年),以确定是否有任何两个学生具有相同的生日(对应于进一步描述的哈希冲突)。直观地说,这个机会可能看起来很小。与直觉相反,至少有一个学生的概率与任何一天的任何其他学生的生日相同,大约为70%(对于n = 30),公式1−365!(365−n)!⋅365n1-\frac{365!}{(365-n)!·365^n}1(365n)!365n

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SK Primin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值