生日攻击
离散对数问题( DLP ) 给定素数 p, α\alphaα, β\betaβ 是模 p 非零的整数,令β=αxmod p\beta = \alpha^x\mod pβ=αxmodp ,则求 x 的问题称为离散对数问题。
生日攻击是一种密码攻击,它利用概率论中生日问题背后的数学原理。攻击取决于随机攻击中的高 碰撞 概率和固定置换次数( 鸽巢原理 )。通过生日攻击,可以在2n=2n/2\sqrt{2^n} = 2 ^ {n / 2}2n=2n/2中找到哈希函数的碰撞碰撞,其中2n2 ^ {n}2n 是经典的预测阻力安全。生日攻击是用来指代一类暴力攻击的名称。它得名于一个令人惊讶的结果:在一个23人的群体中,两个或更多人拥有相同生日的概率大于1/2;这种结果被称为生日悖论。
生日问题
例如,考虑这样一个场景:一个班级有30名学生(n = 30)的教师要求每个人的生日(为简单起见,忽略闰年),以确定是否有任何两个学生具有相同的生日(对应于进一步描述的哈希冲突)。直观地说,这个机会可能看起来很小。与直觉相反,至少有一个学生的概率与任何一天的任何其他学生的生日相同,大约为70%(对于n = 30),公式1−365!(365−n)!⋅365n1-\frac{365!}{(365-n)!·365^n}1−(365−n)!⋅365n