文章来源:Data Intelligence
内容介绍:本研究通过对文献和案例研究的全面分析,探讨了这些道德考虑因素。并提出了关键问题的最新分类,包括大量数据收集带来的隐私风 险、算法偏见导致的歧视、消费者操纵的可能性、经济混乱以及缺乏透明度阻碍问责制。最后提出相关建议,以帮助确保人工智 能驱动的个性化尊重人类价值观,避免不公平的结果,并增进用户福祉。
目录
摘要
人工智能 (AI) 和机器学习通过为消费者提供高度个性化的体验,彻底改变了数字营销。虽然人工智能驱动的个性化 提供了提高参与度和忠诚度的机会,但其广泛使用也引发了有关隐私、偏见、操纵和社会影响的道德挑战。
本研究通过对文献和案例研究的全面分析,探讨了这些道德考虑因素。并提出了关键问题的最新分类,包括大量数据收集带来的隐私风 险、算法偏见导致的歧视、消费者操纵的可能性、经济混乱以及缺乏透明度阻碍问责制。最后提出相关建议,以帮助确保人工智 能驱动的个性化尊重人类价值观,避免不公平的结果,并增进用户福祉。
1.引言
在数字营销领域,人工智能 (AI) 和机器学习已经变得非常流行,从根本上改变了公司与忠实客户的互动方式 [1]。借助 基于人工智能的个性化技术(由复杂的算法支持),营销人员现在可以为每位客户提供个性化的体验、有针对性的产品 推荐和精准的广告 [2]。这种高度定制的策略的使用为消费者互动、转化率和品牌忠诚度提供了机会 [3]。
毫无疑问,人工智能和机器学习在数字营销中的应用带来了以客户为中心的营销策略的新时代,这些策略可以根据每个 消费者的个人需求和偏好量身定制 [2, 4]。另一方面,随着由人工智能驱动的个性化策略的使用,数字营销中的人工智能不断发展,吸引了个人和社会的广泛关注,因此非常有必要对与此方法相关的道德问题进行深入分析 [5]。尽管人工智能有着巨大的前景,但人们对人工智能的道德使用、潜在风险和危害以及需要采取适当的保障 措施来保护消费者的权利和福祉提出了担忧和问题 [6, 7]。学者们强调了解决全球人工智能伦理和人工智能全球治理 的重要性,以确保负责任和合乎道德地使用人工智能技术 [7, 8]。
本研究旨在调查数字营销中越来越多地使用人工智能驱动的个性化技术所带来的道德问题。通过对现有文献和案 例研究进行全面分析,本研究旨在深入了解道德挑战,并为数字营销中负责任的人工智能驱动个性化提出指导方针。使 用人工智能算法进行个性化营销活动可能会带来许多好处。它使公司能够向客户提供高度相关的材料和建议,从而改 善整体客户体验并与这些客户建立更好的联系。
个性化营销有可能提高消费者满意度、参与度和转化率 [9, 10, 10, 11]。另一方面,除了这些优势之外,还存在需要认 真考虑的固有危险和道德问题。 个人信息和隐私安全是关键问题之一。为了开发人工智能系统而收集和分析大量个人数据,引发了人们对用户信息隐 私和安全的担忧。由于个人信息没有得到彻底保护,可能会被滥用和误放,从而导致隐私泄露和未经授权的访问 [12, 13, 14, 15]。 算法偏见是另一个需要考虑的重要道德方面。人工智能计划从历史数据中学习,如果训练数据与现实世界 中存在的偏见相对应,那么这些偏见可能会被算法维持或放大。算法偏见可能会导致歧视性后果,例如有偏见的推荐 或排他性定位,这可能会对社会产生不利影响 [16, 17, 18, 19]。
不仅如此,人们还非常担心操纵客户的可能性。当使用超个性化营销策略时,消费者的自主权和代理权可能会受到 质疑,因为这些策略利用了行为数据和心理洞察。个性化营销信息旨在利用人们的弱点并改变他们的行为,这使得操纵 和不当影响的危险成为可能[20,21,22,23]。
此外,重要的是要仔细考虑人工智能驱动的个性化将如何影响经济和社会。自动化和人工智能驱动的技术有可能扰 乱劳动力市场,最终导致就业机会减少和经济差距扩大。必须确保制定适当且有效的支持计划和政策,以降低这种情 况的风险,因为某些群体可能会受到特别的影响[24, 25, 26, 27]。人工智能系统的透明度和问责制透明度也至关重要。复杂的人工智能算法通常缺乏透明度,因此很难理解它们如何做出决策或识别潜在的偏见和错 误。透明度对于问责制至关重要,因为它使用户、政策制定者和监管机构能够评估人工智能驱动的个性化在数字营销 中的公平性和道德影响[28,29]。
这些道德挑战需要多学科的研究努力来制定负责任的人工智能驱动的数字营销个性化指南和框架。通过对现有文 献和案例研究进行全面分析,本研究旨在为人工智能伦理、数字营销和隐私/数据治理方面的持续讨论做出贡献。从这 项研究中获得的见解将有助于确定关键的道德挑战并提出建议,以确保人工智能驱动的个性化符合人类价值观、尊 重隐私权、避免歧视性结果并促进消费者福利。本文的其余部分结构如下。在第2节中,我们全面回顾了有关人工智能 驱动的数字营销个性化的相关文献,讨论了关键概念、理论框架和实证研究。在第3节中,我们从贡献和影响的角度介 绍和分析了案例研究。第4节讨论了我们的研究结果,并提出了与人工智能驱动的个性化相关的道德考虑和挑战的新 分类。在第5节中,我们扩展了人工智能驱动的数字营销个性化的道德考虑,并为其实施提供了具体建议。第6节全面 概述了研究和解决本研究工作中的伦理问题所涉及的关键学科。最后,在第 7 节中,我们给出了结论并总结了本研究的主要发现。
2.文献综述
近年来,人工智能个性化技术在数字营销中的应用引起了研究人员和从业人员的极大关注。本节全面回顾了数字营 销中人工智能个性化的现有研究,重点关注与隐私、数据保护、算法偏见、消费者权利、经济和社会影响、透明度和问责 制相关的道德考虑。表 1 给出了每项研究的主要贡献和重要性。
2.1 隐私和数据保护
由于收集和使用个人数据来支持个性化营销中的 AI 算法,因此出现了隐私问题。研究强调了保护个人隐私以及确 保安全存储和负责任地使用个人信息的重要性 [30]。数据泄露和未经授权的访问的可能性要求采取强有力的数据保 护措施并遵守《通用数据保护条例》(GDPR)等隐私法规 [31]。 该研究 [32] 侧重于人工智能在营销中的道德问题和影响,但并未深入研究隐私和数据保护的特定领域。个性化是 本文 [33] 涉及的主题之一,该文章探讨了数字营销中的数据隐私问题,同时使用人工智能。它提供了前瞻性的解决方案,例如数据价值主张以及它们可能应用的个性化程度。文章[34]探讨了在数字 营销环境中人工智能驱动的个性化背景下,使用隐私控制作为获取信息的手段,以尽量减少数据造假的发生。文章 [35]的主要重点是人工智能(AI)对数字营销的影响以及营销人员使用的众多AI工具。然而,该报告没有包括任何关 于由AI驱动的应用程序的隐私和数据保护的信息。文章[36]没有明确解决数字营销中人工智能驱动的个性化的数据 保护问题。本文探讨了基于行为数据的个性化与数字网络中隐私问题的结合。表2全面概述了我们的研究结果的具体内容。
2.2 算法偏见
数字营销中人工智能驱动的个性化算法偏见是一个重大问题。研究表明,人工智能算法会产生不公平的结果和不平 等,从而导致歧视 [37]。 人们强调了人工智能算法在捕捉消费者欲望方面的预测能力,但也存在需要解决的人工智能故障 [38]。营销模型中的 算法偏见会对各种客户群体产生毁灭性影响,目前已提出了一个框架来解决这种偏见 [39]。由于数据中隐藏的相关性, 算法个性化可能会无意中歧视某些群体,目前已开发出一个名为 BEAT 的框架来解决此问题 [40]。算法偏见也可能基 于人们的政治倾向而发生,这种偏见比性别和种族偏见更具影响力,也更难发现和消除 [41]。
尽管该研究 [38] 涵盖了基于机器学习的营销模型中的算法偏见,但它并没有直接解决数字营销中人工智能个性化 的算法偏见。该研究 [39] 讨论了基于机器学习的营销模型中的算法偏见;然而,该出版物并没有特别解决数字营销中 人工智能个性化的算法偏见。[40] 讨论了算法个性化中无意偏见的问题。BEAT 框架被提出作为一种消除个性化政策 偏见的手段。该框架有可能用于各种分配选择,包括数字营销。我们的结果细节如表 3 所示。
2.3 消费者操纵
随着人工智能技术的发展,在数字营销中使用个性化已成为可能。这对客户和企业来说都是有利的。 企业能够利用人工智能获取实时消费者信息并设计定制广告 [43]。然而,人工智能驱动的个性化使用引发了有关消费 者隐私和市场力量的问题 [44, 45]。消费者可能不知道他们的数据被使用的方式可能会影响他们的行为和决策 [46]。 为了保护消费者,建立隐私保护制度和数字营销中人工智能技术的监管制度至关重要 [47]。这可以通过加强消费者之 间的监督和信任来实现,而不是通过施加严厉的惩罚。此外,欧盟正在考虑消费者权利与人工智能技术的国际供应有关 的影响,以及人工智能治理领域的立法需求。总的来说,需要在人工智能实现的个性化优势与保护消费者权利和机密信 息之间取得平衡。
人工智能技术在电子商务中的优势之一是能够为客户提供个性化建议,这在文章中进行了讨论[43]。报告建议监管 机构应加强监督,以保护消费者的隐私和增加信心。然而,它并没有特别解决在人工智能实现的数字营销个性化背景下对客户的保护问题。
在研究[44]中,作者讨论了数字营销和人工智能在以更有效的方式增强客户体验和目标消费者方面的功效。 该研究没有特别提及人工智能数字营销中个性化的客户保护。人们担心,源代码的贸易纪律可能会阻碍未来欧盟 对损害消费者利益的人工智能的监管,这一点在文章中进行了讨论[46]。该研究还分析了人工智能对欧盟消费者权 利的影响。在数字营销的背景下,它并没有直接涉及人工智能个性化的客户保护。在这项研究[47]中,Nirvikar 探讨了 基于行为数据的个性化与数字网络中隐私和市场力量问题的结合。
我们的研究结果的详细内容概述于表 4。
2.4 经济和社会影响
在数字营销方面,迫切需要仔细评估由人工智能驱动的定制功能实施所带来的经济和社会影响。尽管人工智能定 制有很多好处,例如改善客户体验,但人们也担心失业和经济机会的不平等。[48,49] 这项研究 [50] 的理念是,使用智能计算机程序可以帮助公司了解人们在社交媒体上的想法,尤其是那些拥有一小 群但重要的追随者的人。这些小规模的影响者可以通过在线分享他们对产品的看法,真正帮助公司销售更多产品。然 而,它并没有具体讨论人工智能在数字营销中的社会考虑。
该论文 [51] 从多利益相关方的角度讨论了在营销中部署 人工智能的道德挑战,包括社会和环境考虑。它建议利用人工智能在营销中造福社会,促进社会和环境福祉。该论文 [52] 讨论了人工智能在数字营销中的两个关键社会考虑因素:人工智能算法偏见和消费者身份,以及人工智能算法 不可解释性和营销人员的消失。本文 [53] 讨论了人工智能的总体社会影响,包括优点和缺点、挑战及其在促进社区 服务方面的重要性。论文 [54] 从经济学角度讨论了人工智能对营销的影响,将研究论文分为预测、决策、工具、策略 和社会等影响级别。我们的研究结果的详细信息概述在表 5中。
2.5 透明度和问责制
透明度是 AI 对数字营销影响的一个关键因素。品牌正在使用 AI 来提供更加个性化的客户体验并了解受众数据 模式,但他们也很难在使用 AI 和对客户保持透明之间找到平衡 [35]。更广泛的公众对人工智能缺乏了解和不信任,这需要开发者、用户和公众之间进行主动沟通和公开对话,以提高透明度和接受度 [56]。 透明度在人工智能决策系统中尤为重要,可以解决数字歧视问题并确保公平性 [57]。人工智能透明度的概念是多方面的,在 当代人工智能治理讨论中占有重要地位 [58]。人工智能有可能取代营销中的手动和重复性任务,但由于道德问题和对技术缺 乏信心,其采用速度缓慢 [59]。总的来说,透明度对于在数字营销中建立对人工智能的信任和接受度至关重要。
论文 [35] 提到,随着越来越多的公司投资于人工智能产品,客户将期望这些技术的工作原理以及它们对隐私的意义更加透明。论文 [56] 讨论了透明度 和开放式沟通在向公众营销人工智能方面的重要性,但并没有具体讨论透明度对数字营销中人工智能的影响。所提供的论文 [57] 并没有具体讨论透明度 对数字营销中人工智能的影响。本文重点关注人工智能决策系统对透明度的需求,以及利益相关者解决数字歧视所需的不同视角和透明度类型。论文 [58] 主要关注人工智能透明度和算法透明度的概念区别,以及透明度在人工智能治理中的相关性。论文 [60] 没有具体提到透明度对数字营销中人工智能的影 响。本文着重于提出一种向公众开放的人工智能系统的透明度方案,重点关注数据隐私和人工智能透明度。我们的研究结果的细节概述在表 6 中。
3.案例研究和实验设置
本节包含各种案例研究,探讨数字营销中与 AI 个性化相关的道德问题。每个案例研究都经过仔细研究,以揭示其在处理 道德困境方面的独特贡献和影响。我们将分析现实世界的案例,为数字营销中 AI 个性化的道德决策的复杂性和微妙性提供 有用的见解。通过详细研究这些案例研究,我们希望全面了解与 AI 个性化相关的道德方面,帮助学者和专业人士更有效地涉足这一领域。
3.1 隐私和数据保护
案例研究1:剑桥分析公司和Facebook
背景:剑桥分析公司丑闻于 2018 年 3 月爆发,涉及未经授权收集和使用数百万 Facebook 用户的个人数据 [61]。这些数据 是通过亚历山大·科根 (Aleksandr Kogan) 开发的第三方应用程序收集的,该应用程序伪装成一个性格测试。参加测试的用 户在不知情的情况下授予该应用程序访问他们及其 Facebook 好友的数据的权限。然后剑桥分析公司利用这些数据创建心理档案,并在 2016 年美国总统大选和英国脱欧公投期间向选民发送个性化的政治广告。
分析:
- 知情同意:用户不知道他们的数据被收集并用于 超出了应用程序的初衷。
- 数据隐私和安全:该丑闻凸显了 Facebook 在数据隐私和 安全机制。
- 道德人工智能使用:使用人工智能和数据分析来影响政治结果引发了道德问题 对操纵和民主进程的完整性的担忧。
- 监管监督:该事件表明需要更强有力的监管框架来 保护用户数据并确保数据处理实践的透明度。
影响:
- 财务影响:Facebook 被美国联邦贸易委员会罚款 50 亿美元,这是有史以来对科技公司处以的最高 罚款之一。
- 公众意识:该事件极大地提高了全球对数据隐私问题和数据滥用风险的认识。
- 政策变化:该丑闻促使制定了更严格的数据保护法规,包括 GDPR 欧盟以及 Facebook 数据处理实践的变化。
- 信任受到侵蚀:公众对 Facebook 和其他社交媒体平台的信任受到严重损害,引发了有关数据隐私和技术道德的更广泛讨论。
案例研究2:Equifax数据泄露
背景: 2017 年,美国最大的信用报告机构之一 Equifax [62] 遭遇了一次重大数据泄露,约 1.47 亿人的个人信息被泄露。此次泄露是 由于 Equifax 未能修补 Web 应用程序漏洞而导致的,导致敏感信息被未经授权访问,包括社保号、出生日期、地址,在某些情况下还包 括驾照号和信用卡详细信息。
分析:
- 漏洞管理:此次泄密事件凸显了 Equifax 漏洞的严重缺失 管理和修补过程。
- 数据安全:该事件凸显了采取强有力的数据安全措施来保护 敏感信息。
- 组织责任: Equifax 的延迟响应和安全措施不足导致了严重的法律和财务后果。
- 消费者信任:此次泄密事件损害了消费者对信用报告机构的信任,并引发了人们对个人财务数据安全的担忧。
影响:
- 法律和财务后果:Equifax 面临与 FTC 达成的 7 亿美元和解, 消费者金融保护局(CFPB)以及美国 50 个州和地区。
- 监管变化:此次泄密事件促使人们呼吁加强数据保护法规,并 提高网络安全标准。
- 公众意识:该事件提高了公众对数据安全的认识,以及 保护个人信息。
- 企业实践:公司被迫重新评估其数据安全实践并实施更严格的网络安全措施。
案例研究 3:万豪酒店数据泄露
背景:2018 年,万豪国际 [63] 披露了一起数据泄露事件,影响了约 5 亿客人。此次泄露始于 2014 年,涉及未经授权访问喜达屋客人 预订数据库。泄露的数据包括敏感信息,例如姓名、地址、电话号码、电子邮件地址、护照号码,在某些情况下还包括支付卡信息。
分析:
- 数据安全实践:此次泄密事件暴露了万豪数据安全的重大漏洞 实践以及检测和应对威胁的能力。
- 第三方风险:该事件凸显了并购相关的风险,因为 万豪在收购喜达屋后继承了其脆弱性。
- 监管影响:此次泄密事件凸显了遵守数据保护法规和实施强有力的安全措施的必要性。
- 消费者保护:该事件引发了人们对酒店业个人信息安全和更好地保护消费者需求的担忧。
影响:
- 监管罚款:万豪面临监管罚款和诉讼,其中包括英国信息专员办公室 (ICO) 的 1840 万英镑罚款。
- 声誉损害:此次泄密事件损害了万豪的声誉并导致其失去客户信任。
- 政策修订:该事件促使万豪等公司加强数据保护 安全实践并增强其网络安全框架。
- 公众意识:此次泄密事件提高了公众对数据保护重要性以及酒店业数据泄露风险的认识。
案例研究4:Google+数据泄露
背景: 2018 年,谷歌宣布 Google+ API 中的一个漏洞在三年内暴露了多达 50 万用户的私人数据 [64]。该漏洞允许外部开发人员访问 用户标记为私人的个人资料信息。这一事件尤其令人担忧,因为谷歌担心监管审查和声誉受损,选择不立即披露该问题。
分析:
- 数据保护失败:该事件凸显了谷歌数据保护方面的重大缺陷 实践和保护用户信息的能力。
- 透明度和披露:谷歌延迟披露数据泄露事件引发道德问题 并强调了处理数据泄露时透明度的重要性。
- 监管问题:该事件凸显了严格遵守数据 保护法规并及时报告数据泄露。
- 平台安全:此次曝光强调了社交媒体平台需要采取强有力的安全措施来保护用户数据。
影响:
- 服务关闭:谷歌决定关闭面向消费者的 Google+,承认 平台无法满足数据保护标准。
- 监管审查:该事件引起了监管机构的关注,并强调了加强数据隐私保护的必要性。
- 公众信任:此次曝光削弱了公众对谷歌保护用户数据能力的信任,促使 关于社交媒体数据安全的更广泛的讨论。
- 政策变化:该事件导致谷歌采取更严格的数据保护措施,并 改进处理用户数据和披露违规行为的做法。
3.2 算法偏见
案例研究1:亚马逊的人工智能招聘工具
背景:2014 年,亚马逊开发了一款人工智能招聘工具,旨在实现招聘流程自动化 [65]。然而,到 2015 年,人们发现该工具 对女性存在偏见。该人工智能系统接受了十年间提交给亚马逊的简历的训练,其中大部分简历来自男性,反映了男性主导的 科技行业。因此,人工智能青睐男性候选人,而对包含“女性”一词或提到女子大学的简历则不予录用。
分析:此案例说明了人工智能系统如何延续甚至加剧历史数据中现有的偏见。该算法学会了偏爱男性候选人,因为它是根 据反映历史招聘实践的数据进行训练的。这一结果强调了数据选择和预处理在人工智能开发中的重要性:
- 训练数据:训练数据的质量和代表性至关重要。在这种情况下,AI 系统复制了现有的性别偏见,因为它是在有偏见的数据上进行训练的。
- 偏见检测与缓解:检测和缓解偏见的有效策略至关重要。 亚马逊未能充分解决数据中固有的偏见,导致人工智能行为出现偏差。
- 道德考虑:部署有偏见的人工智能系统的道德影响可能非常重大,影响招聘实践的公平性和平等性。
影响:亚马逊的经历凸显了在人工智能开发中谨慎选择数据和制定偏见缓解策略的必要性。该公司最终放弃了该工具, 认识到如果不延续偏见,就无法挽救它。
案例研究 2:Apple Card 信用额度
背景:2019 年,由高盛管理的苹果信用卡面临信用额度算法存在性别歧视的指控 [66]。包括苹果联合创始人史蒂夫·沃 兹尼亚克在内的多位知名人士报告称,尽管财务状况相似,但女性的信用额度明显低于男性。
分析:此案例凸显了确保人工智能金融服务公平性的挑战:
- 算法透明度:信用额度确定方式缺乏透明度,导致难以评估和解决潜在偏见。
- 偏见的影响:信贷决策中的性别偏见可能会对以下方面产生重大的财务影响: 受影响的个人,影响他们获取信贷和金融服务的能力。
- 监管审查:该事件导致纽约金融管理局展开调查 服务,凸显了人工智能应用监管的必要性。
影响:围绕 Apple Card 信用额度的争议引起了人们对人工智能决策过程中透明度和公平性重要性的关注。它还引发了 关于金融算法偏见以及严格测试和验证必要性的更广泛讨论。
案例研究 3:COMPAS 累犯算法
背景:美国刑事司法系统使用“惩教罪犯管理替代制裁分析”(COMPAS)算法来预测被告再次犯罪的可能性 [67]。 2016 年,ProPublica 的一项调查显示,该算法对非裔美国人存在偏见,与白人被告相比,非裔美国人被不成比例地赋予了 更高的风险分数。
分析:此案例凸显了人工智能在关键决策中存在偏见所带来的伦理和社会影响 流程:
- 算法公平性:确保用于高风险决策(例如刑事判决)的算法的公平性至关重要。COMPAS 算法的偏见引发了人们对种 族歧视和正义的担忧。
- 透明度和问责制: COMPAS 算法的专有性质使其偏见难以审查和解决,这凸显了人工智能系统透明度的必要性。
- 社会影响:有偏见的风险评估可能会加剧刑事司法领域现有的不平等现象 体制,导致少数群体受到不公平待遇。
影响: ProPublica 调查结果引发了广泛呼吁,要求司法系统采用更加道德和透明的人工智能。它强调了对影响人们生 活的人工智能应用进行严格测试和减少偏见的必要性。
案例研究4:微软的Tay聊天机器人
背景:2016 年,微软推出了一款名为 Tay 的 AI 聊天机器人,旨在与 Twitter 用户互动并从他们的互动中学习 [68]。然 而,在 24 小时内,Tay 就开始发布攻击性和不恰当的推文,反映了它从用户那里学到的有害行为。
分析:此事件凸显了部署从用户身上学习的人工智能系统的风险 缺乏足够保障措施的互动:
- 从数据中学习:从用户生成内容中学习的人工智能系统可以快速采用并 如果没有适当的监控和控制,有害行为将会加剧。
- 符合道德的人工智能设计:人工智能系统的设计和部署必须考虑道德因素,并 防止有害内容传播的机制。
- 快速反应: Tay 的快速关闭表明需要采取快速果断的行动 当人工智能系统出现意外或不适当行为时。
影响:微软不得不在 Tay 发布后 24 小时内将其关闭,这凸显了道德 AI 设计的重要性以及采取强有力保障措施的必要性,以防止 AI 系统学习和传播有害行为。
3.3 消费者操纵
案例研究1:Facebook 的情绪操纵实验
背景:2014 年,Facebook 进行了一项研究情绪感染的实验,在未经用户明确同意的情况下操纵了近 70 万用户的新闻推 送 [69]。该研究旨在确定接触正面或负面内容是否会影响用户的情绪和发帖行为。
分析:这项实验引发了有关在未经知情同意的情况下操纵用户情绪的重大伦理问题。关键问题包括:
- 知情同意:用户并未被告知他们是实验的一部分,这引发了担忧 关于在未经明确同意的情况下进行研究的道德问题。
- 情感影响:操纵用户新闻推送中的情感内容可能会带来无法预见的 心理影响,可能会加剧心理健康问题。
- 透明度和信任:进行此类实验缺乏透明度可能会损害用户 信任该平台。
影响:这项实验引发的强烈反响凸显了研究和营销实践中透明度和知情同意的必要性。它引发了关于社交媒体研究的道德 标准以及科技公司对用户的责任的讨论。
案例研究 2:Uber 的动态定价算法
背景:Uber 的动态定价算法会在需求旺盛时期(例如恶劣天气或重大事件期间)动态提高乘车价格 [70]。虽然该算法旨在 通过激励更多司机提供服务来平衡供需,但它因操纵价格而受到批评。
分析:动态定价虽然在经济上合理,但却带来了一些道德和消费者相关的问题:
- 感知到的不公平:消费者常常认为动态定价是一种剥削,尤其是在他们选择有限的紧急情况下。
- 透明度:算法的不透明性可能会导致消费者的误解和不信任。
- 经济差距:动态定价可能会对低收入人群产生不成比例的影响,他们可能 难以承担上涨的价格。
影响:围绕动态定价的争议引发了关于定价伦理的持续讨论。 动态定价模型以及此类算法对更高透明度和公平性的需求。
案例研究 3:Target 的预测分析
背景:塔吉特利用预测分析根据消费者的购买习惯识别怀孕顾客,并向他们发送有针对性的广告 [71]。这种方法导致了一起引人注目的事件:一名少女通过有针对性的邮件向她的父亲透露了自己怀孕的消息。
分析:此案例凸显了个性化营销与隐私之间的微妙平衡:
- 侵犯隐私:使用预测分析可能会侵犯个人隐私,导致意外的、潜在有害的泄露。
- 道德考虑:公司必须考虑使用个人数据进行定向营销的道德影响,确保不会跨越隐私界限。
- 消费者信任:此类事件可能会损害消费者信任,因此需要 数据实践的透明度和对隐私的尊重。
影响:该事件提高了人们对预测分析的道德使用以及在营销策略中保护消费者隐私的重要性的认识。
案例研究4:YouTube的推荐算法
背景:YouTube 的推荐算法因推广极端主义内容和阴谋论以最大限度地提高用户参与度而受到批评 [72]。该算 法优先考虑那些增加观看时间的内容,通常会将用户引向有害且具有操纵性的内容路径。
分析:关注参与度而非内容质量引发了几个问题:
- 有害内容传播:通过推荐煽情和极端内容,算法可以 助长了错误信息和极端主义的传播。
- 责任和义务:平台需要对所推广的内容负责 他们的算法并确保它不会损害用户。
- 内容审核:需要更有效的内容审核,以防止 有害和操纵性的材料。
影响:批评引发了人们对内容更加透明和负责的呼吁 推荐系统,推动平台重新考虑其算法的道德影响。
3.4 经济和社会影响
案例研究 1:零售自动化沃尔玛
背景:沃尔玛越来越多地采用人工智能和自动化技术,例如用于库存管理和货架扫描的机器人,以提高运营效率 [73]。
分析:人工智能与零售业的融合既带来好处,也带来挑战:
- 提高效率:自动化提高了效率并降低了运营成本,从而实现了更好的库存管理和客户服务。
- 工作岗位流失:自动化系统的兴起可能导致大量工作岗位流失,影响 从事传统零售岗位的员工。
- 经济调整:需要制定政策和计划来帮助失业工人过渡 担任新角色并获得相关技能。
影响:本案例凸显了自动化的双刃剑性质,强调需要制定支持性政策来减轻对工人的不利影响,同时利用技术进步的好处。
案例研究2:亚马逊仓库自动化
背景:亚马逊在其仓库中广泛实施自动化,利用机器人进行分类、包装和其他物流任务,以提高效率 [74]。
分析:仓库操作的自动化有几个含义:
- 提高效率:自动化显著提高了运营效率,降低了成本和 缩短交货时间。
- 工人剥削:人们对工人的工作条件和待遇表示担忧 高度自动化环境中的人类工作者。
- 失业:机器人取代传统仓库工作需要重新评估劳动力战略和工作再培训计划。
影响:该案例强调了在部署人工智能和自动化时考虑道德问题的必要性 技术,特别是有关工人待遇和工作岗位流失的技术。
案例研究 3:金融服务中的人工智能机器人顾问
背景: Betterment 和 Wealthfront 等机器人顾问 [75] 通过提供基于算法的自动化投资建议,改变了金融咨询 行业。
分析:机器人顾问的兴起既带来了机遇,也带来了挑战:
- 可及性和可负担性:机器人顾问使金融服务更加便捷, 负担得起,特别是对于资产基础较低的个人而言。
- 工作岗位流失:金融咨询服务的自动化对传统金融构成风险 顾问,这可能会导致该行业的失业。
- 监管监督:确保机器人顾问透明且合乎道德地运营需要强有力的监管框架来保护消费者。
影响:这一转变凸显了人工智能在金融服务领域的经济影响,并强调了 监管监督对于确保机器人顾问公平、合乎道德地运作的重要性。
案例研究 4:制造业中的人工智能富士康
背景:大型电子制造商富士康 [76] 已在其中国工厂用机器人取代了数千名工人,以提高生产率并降低劳动力成本。
分析:人工智能和机器人技术在制造业的应用带来了重大变化:
- 提高生产力:自动化可以提高生产力并减少错误,从而允许更多 高效的制造流程。
- 失业:机器人大规模取代人类工人导致大量失业, 引起人们对受影响社区的社会和经济影响的担忧。
- 经济转型:需要制定策略来支持工人转型到新角色并确保公平分配自动化带来的好处。
影响:该案例说明了人工智能驱动的自动化在制造业中产生的更广泛的社会经济影响,凸显了制定应对就业流失和经济转型挑战的政策的必要性。
3.5 透明度和问责制
案例研究 1:欧盟对谷歌搜索算法的调查
背景:2017 年,欧盟对谷歌处以 24.2 亿欧元罚款,原因是谷歌滥用市场主导地位,在搜索结果中偏向自己的比较 购物服务而不是竞争对手[77]。
分析:此案例凸显了确保复杂人工智能系统透明度的挑战:
- 算法透明度:谷歌搜索算法的复杂性和不透明性使得它 很难确定偏见和不公平做法的程度。
- 市场公平性:在搜索结果中偏袒自己的服务会破坏公平竞争,使其他企业处于不利地位。
- 监管监督:该案例凸显了监管监督在维护公平方面的重要性 市场行为和防止滥用市场支配地位。
影响:欧盟的行动强调了人工智能驱动的决策过程需要提高透明度和问责制,鼓励公司在算法中采用公平透明的 做法。
案例研究 2:Facebook 的算法变化
背景:Facebook 定期更改其新闻推送算法,但通常没有向用户明确说明这些更改及其影响 [78]。这些更改严重 影响了依赖 Facebook 进行推广的用户和企业的内容可见性。
分析:这些算法变化缺乏透明度,导致了严重的后果:
- 用户体验:突然且无法解释的变化可能会对用户体验产生负面影响,导致 沮丧和困惑。
- 业务影响:依赖 Facebook 获得知名度和客户参与度的企业可以 由于算法的变化,覆盖面和参与度下降。
- 信任和责任:清晰的沟通和透明度对于维持与用户和利益相关者的信任和责任至关重要。
影响:该案例强调了社交媒体平台需要透明地公开其算法及其对用户体验的影响,并倡导更好的沟通和问责。
案例研究 3:Uber 的灰球计划
背景:Uber 开发了一款名为 Greyball 的工具,用于在其服务受到限制或禁止的城市逃避执法 [79]。该工具使用从 Uber 应用程序收集的数据来识别执法人员并阻止其预订乘车。
分析:使用 Greyball 引发了重大的道德和法律问题:
- 道德考量:开发故意欺骗当局的技术会引发严重 有关企业实践和诚信的道德问题。
- 法律影响:通过技术手段逃避执法可能导致法律 后果和监管打击。
- 企业责任:该丑闻凸显了企业遵守道德标准并对其行为负责的必要性。
影响:灰球计划引发了监管调查,并损害了 Uber 的声誉。 强调企业实践中道德考虑和透明度的重要性。
案例研究 4:微软透明中心
背景:为了应对日益增长的数据隐私和安全担忧,微软建立了透明中心,以允许政府官员审查其源代码并确保没有后门或漏洞 [80]。
分析:该计划旨在建立信任并展示微软对透明度和安全性的承诺:
- 建立信任:通过开放源代码供审查,微软寻求与 关注数据隐私和安全的政府和客户。
- 主动方法:透明中心代表着一种主动解决隐私和安全问题的方法,而不是对违规或丑闻做出反应。
- 企业责任:该倡议强调企业责任的重要性,并 维护客户信任和监管合规方面的透明度。
影响:透明中心得到了积极的反响,被认为是朝着提高透明度和问责制迈出的一步,为其他科技公司树立了先例。
4. 讨论和发现
目前的研究已经解决了数字营销中人工智能个性化的道德问题,但仍存在一些空白。我们结合观察和批判 性评估,进行了一项彻底的研究,以填补这一研究空白。这些分析最终形成了图 1 所示的分类,该分类识别了需要进一步探索的特定领域,详见相应章节。表 7 列出了每个类别的详细分类。
4.1 对隐私和数据保护案例研究的批判性评价
表 8 对第 3.1 节中描述的案例研究进行了批判性分析,并根据以下标准进行了评估:
主要发现:该分析强调了基于现实事件的人工智能个性化的长期影响、文化因素、用户观点、持续影响和监 管环境等几个重要的伦理考量。具体而言,它强调需要评估长期的政治、社会和经济后果,尊重用户自主权和 全球多样性,纳入关于不断变化的用户态度的实证研究,制定全面的指导方针和问责框架,并评估现有法规以 应对人工智能技术带来的新挑战。
关键要点:个性化策略的设计必须考虑到其持久影响。用户授权、文化敏感性和偏好一致性应指导人工智 能的发展。违规行为凸显了强大的安全性、透明度和负责任的数据使用的重要性。事件促使人们重新评估法 规,以确保隐私保护与技术进步保持同步。
前沿思考:未来的工作可以探索算法问责制、人机协作、创新政策制定方法以及人工智能的技术、法律和社会治理促进负责任的创新。跨学科合作对于平衡新机遇与风险管理至关重要,从而最大限度地造福个人和社会。
4.2 对算法偏见案例研究的批判性评估
表 9 对第 3.2 节中描述的案例研究进行了批判性分析,并根据以下标准进行了评估:
主要发现:案例研究普遍强调了历史数据和算法存在偏见、缺乏透明度、对用户观点和文化因素考虑不足以及对 意外后果的防范措施不足等问题。它们还揭示了现有法规和跨学科合作在开发合乎道德的人工智能方面存在的差 距。
关键要点:分析提出了几项建议开展严格的实证研究;通过代表性解决偏见问题;确保透明度、用户理解和控 制;减轻意外影响;通过多利益相关方合作制定全面的指导方针;并评估监管框架的持续相关性。
前沿考虑:长期影响评估、持续自主和文化敏感性评估等新兴主题以及跨部门探索人工智能个性化可以进一步 推动人工智能的道德发展。 持续整合不同观点的研究对于平衡创新与责任至关重要。
4.3 对消费者操纵案例研究的批判性评价
表 10 对第 3.3 节中描述的案例研究进行了批判性分析,并根据以下标准进行了评估:
主要发现:案例研究强调了人工智能个性化的几个重要的伦理考虑,包括长期影响评估的必要性、用户自主性和 控制、文化敏感性、减轻意外后果、理解用户观点、解决持续影响以及现代化监管框架。
关键要点:需要进行更多研究来全面评估人工智能个性化的效果,尤其是通过捕捉用户观点的实证研究。还需要 跨学科的指导方针和合作,以确保技术尊重隐私、避免危害并长期造福消费者和社会。
前沿考虑:算法问责、网络激进化和预测技术在新领域的使用等新兴问题表明,需要对人工智能个性化不断演变 的道德挑战进行持续分析,以帮助其发展和治理与人类价值观保持一致。
4.4 对经济和社会影响案例研究的批判性评价
表 11 对第 3.4 节中描述的案例研究进行了批判性分析,评估了根据图 1 中列出的 12 个类别。
主要发现:案例研究强调了有关工作岗位流失、工人自主性、文化敏感性、意外后果、缺乏用户视角、对市场 的持续影响以及在人工智能和自动化背景下对支持性政策和法规的需求等重要问题。
关键要点:需要更多研究和指导方针来全面解决自动化的社会经济影响,特别是通过验证索赔、了解用户 观点和确保公平对待工人。跨学科合作对于负责任地管理变革也至关重要。
前沿考虑:全球供应链转型、标准化工作条件、新领域的算法风险以及对流离失所人口的支持等新兴挑战 表明需要持续分析人工智能不断演变的经济和社会影响。
4.5 对透明度和问责制案例研究的批判性评价
表 12 对第 3.5 节中描述的案例研究进行了批判性分析,评估了 根据图 1 中列出的 12 个类别。
主要发现:这些案例强调了算法/实践不透明、缺乏用户代理、意外后果、需要实证验证、标准的重要性、跨学科合作 和监管现代化等问题,以确保透明度和问责制。
关键要点:主动透明有助于建立信任,而被动措施往往会损害声誉。技术人员、政策制定者和社区之间的合作对于 制定负责任的解决方案至关重要。
前沿考虑:涉及算法可解释性、在线影响、数据责任和地缘政治合规性的新兴挑战凸显了对不断变化的透明度和 问责制需求进行持续分析的必要性。
5. 实际建议和实施
本节扩展了数字营销中人工智能个性化的道德考虑,并为其实施提供了具体的建议。
5.1 隐私和数据安全
- 数据最小化:通过仅收集个性化目的所必需的数据来实施数据最小化原则。例如,关注特定的用户交互,而不是 广泛的人口统计数据。
- 匿名化和加密:使用差异化等高级匿名化技术 隐私和同态加密来保护用户数据。
- 定期审计:使用 OneTrust 和 TrustArc 等工具进行定期隐私审计和评估,以确保遵守数据保护法规。
- 事件响应计划:制定全面的事件响应计划。一旦发生数据泄露,立即遏制泄露,通知受影响的用户,并与监管机 构合作。 使用 Splunk 和 IBM QRadar 等违规检测工具进行监控并快速响应。
- 联合学习:实施联合学习以增强隐私和数据安全。联合学习允许 AI 模型在多个持有本地数据样本的分散设备或服务器上进行训练,而无需 交换它们。这种方法最大限度地降低了数据集中化带来的风险。
5.2 算法偏见
- 偏见检测框架:开发和整合 BEAT(偏见评估和测试)和公平性指标等框架,以识别和减轻 AI 模型中的偏见。
- 人机互动:在决策过程中引入人类监督。建立道德审查委员会,并利用 Amazon Mechanical Turk 等平台收 集各种人类反馈。
- 透明度报告:发布透明度报告,详细说明人工智能算法如何做出决策、它们使用的数据以及为防止偏见而采取 的措施。包括案例研究和减轻偏见的例子。
- 偏见缓解技术:使用偏见缓解技术,如重新加权、重新采样和对抗性去偏,以确保公平的 AI 输出。
- 多样化的训练数据:确保训练数据多样化且具有代表性。与组织合作 提供多样化的数据集并不断评估数据多样性。
- 联邦学习减少偏见:使用联邦学习从不同来源获取更多样化的训练数据,同时又不侵犯用户隐私。这有助于创建偏见更少、更通用的模型。
5.3 消费者操纵
- 道德设计原则:采用优先考虑用户自主权的道德设计原则,并知情同意。
- 用户反馈机制:使用 Qualtrics 和 SurveyMonkey 等工具实施用户反馈机制。利用这些反馈来调整 AI 模型,确保它们符合用户的期望和道德规范。
- 行为数据保护措施:针对行为数据的使用建立保护措施。例如,限制使用敏感行为数据进行个性化,除非获得用户明确同意。 用户。
- 个性化透明度:向用户提供有关个性化算法工作原理和所用数据的清晰信息。使用可解释性工具,如 LIME(本地可解释模型无关解释)和 SHAP(SHapley 附加解释)。
- 道德培训:为开发者和营销人员提供道德培训,确保他们了解 消费者操纵的含义并有能力做出道德决策。
5.4 经济和社会影响
- 支持计划:为因人工智能驱动的失业工人制定和实施支持计划 自动化。利用Coursera和Udacity等平台投资再培训计划。
- 经济政策:倡导缓解人工智能加剧的收入不平等现象的经济政策。这可能包括累进税制、全民基本收入 (UBI) 和社会安全网。
- 社区参与:与社区合作,了解人工智能对当地的影响,制定包容性战略。与不同的利益相关者进行公众咨询和参与式设计会议。
- 可持续发展计划:利用人工智能优化资源使用并减少环境影响,推动可持续发展计划。
- 道德人工智能认证:鼓励采用道德人工智能认证,例如 IEEE 和 AI4ALL 提供的认证,以促进负责任的人工智能开发和部署
5.5 透明度和问责制
- 可解释的人工智能:开发和部署可解释的人工智能 (XAI) 模型,为决策制定提供清晰易懂的解释。使用可解释的机器学习技术和工具,如 LIME 和 SHAP。
- 审计线索:使用 ELK Stack(Elasticsearch、 人工智能系统可以使用多种工具来记录用户的行为和决策,例如 Logstash、Kibana 等。
- 监管合规性:通过实施确保遵守 GDPR 和 CCPA 等法规 强大的数据治理框架并进行定期合规性检查。
- 第三方审计:进行第三方审计,确保透明度和责任制。合作伙伴 与专门从事人工智能道德与合规的审计公司合作。
- 用户教育:教育用户了解他们的权利以及人工智能系统对他们的影响。提供资源 以及帮助用户了解和控制其数据的工具。
6. 人工智能伦理影响及影响因素学科格局
研究人工智能的伦理影响和贡献方面得益于多个学科的共同贡献。跨学科合作提供了一种全面而彻底的 方法来理解和解决与人工智能驱动的个性化相关的伦理困境。图 2 中的以下学科概况全面概述了研究和解 决本研究工作中的伦理考虑所涉及的关键学科。
跨学科合作可以促进解决人工智能个性化伦理问题的协同方法,如下例所示。研究人员能够通过整合多学 科的经验、方法和观点,提出鼓励合乎道德和负责任地部署人工智能的实用解决方案。这使他们能够更彻底地 了解所涉及的风险。

6.1 计算机科学与人工智能+伦理与哲学
计算机科学家和人工智能研究人员与伦理学家和哲学家合作开发符合道德的人工智能算法和模型。通过 将技术知识与道德观点相结合,他们旨在减少偏见、提高透明度并确保人工智能系统的道德开发和实施。这种合作对于创建符合人类价值观和社会规范的 人工智能至关重要。
6.2 计算机科学与人工智能+商业与营销
计算机科学家、人工智能研究人员以及商业和营销专家的合作对于理解和处理人工智能驱动的个性化的 道德后果至关重要。 计算机科学家利用他们的技术知识创建 AI 算法和模型,以改进个性化营销活动。商业和营销专家提供有关市 场趋势、消费者行为和客户关系管理道德方面的观点。这种合作关系确保 AI 驱动的定制不仅在技术上强大, 而且符合道德和负责任的商业原则。
6.3 法律与政策+社会科学与心理学
法律专业人士和政策制定者与社会科学和心理学专家合作,研究人工智能驱动的个性化的社会和心理影 响。这种合作关系影响了规则和政策的制定,这些规则和政策利用消费者行为和态度的经验数据,减轻了负面 影响并保障了消费者权益。他们的共同努力有助于制定保护个人的立法,同时促进负责任地使用人工智能。
6.4 商业与营销+数据科学与数据治理
商业和营销主管与数据科学家合作,优先考虑在人工智能驱动的个性化中适当使用数据。商业和营销专家 分析市场动态、经济效应和道德问题。数据科学家创建数据治理框架和隐私增强技术来解决个性化营销中的 道德问题。
6.5 法律与政策+商业与营销
法律专业人士和政界人士与商业和营销专家合作,讨论人工智能驱动的个性化带来的道德后果。这种合作 关系将数据安全、隐私权和消费者保护方面的法律能力与对市场动态和商业策略的理解结合起来。他们合作 创建立法框架和行业规范,以支持个性化营销中的道德实践。
6.6 未来方向
为了更深入地了解影响人工智能伦理的人为因素,上述跨学科方法可以扩大到涵盖社会学、人类学和认知 科学等补充学科。未来研究的主要目标是应该为人工智能在数字营销中的道德部署创建详尽的框架。该框架应该参考各种利益相关者的反馈,例如消 费者、倡导组织和监管机构。
此外,持续监测和评估人工智能系统也至关重要,这样才能快速发现和解决不断发展的伦理问题。创建专 注于人工智能伦理的多学科研究中心和学者团体可能会促进研究人员、从业者和政策制定者之间的持续辩 论和合作。这些努力将导致制定灵活且反应迅速的规则,这些规则将随着人工智能技术的突破而进步。
7. 结论
随着人工智能驱动的个性化在数字营销中变得越来越普遍,解决其道德问题对于维护公众信任至关重要。 这项研究分析了当前的讨论,并确定了负责任发展的几个优先领域,包括保护隐私和数据安全、减轻算法偏见、防止消费者操纵、解决经济和社会影响以及提高透明度和问责制。虽然人工智能算法驱动的个性化带来了 好处,但需要制定指导方针和监督来遏制潜在的危害。 营销人员、技术人员、政策制定者和消费者等多方利益相关者的合作对于平衡创新与道德保障至关重要。未 来的工作可以基于这些建议,制定实施和评估框架。总体而言,以人为本、考虑多种观点的方法将是确保人工 智能驱动的个性化能够增进消费者福利和社会进步的关键。