- 博客(3)
- 收藏
- 关注
原创 PyTorch中torch.norm函数详解
是 PyTorch 中的一个函数,用于计算输入张量沿指定维度的范数。具体而言,当给定一个输入张量。参数设置为 1 来计算 L1 范数。在输出结果中,我们使用。参数设置为 1 和 -1 以分别按行和按列计算范数,并将。沿着最后一个维度(默认为所有维度)上所有元素的。将标量张量转换回 Python 中的浮点数,用。函数计算了不同维度上的范数。在这个示例中,我们首先创建了一个形状为。将张量转换回 NumPy 数组。
2023-05-20 15:22:28 3924 1
原创 unsqueeze 和 squeeze 函数
squeeze(dimension) 函数相反,它会将指定维度上的维度为1的维度去除,返回一个新的张量。如果没有指定维度,则会将所有维度为1的维度都去除。在上面的例子中,unsqueeze(a, 1) 表示在第1维上添加一个新的维度,原始张量形状为[2, 3],新的张量形状为 [2, 1, 3]。在上面的例子中,squeeze(a) 会将张量 a 中维度为1的维度去掉,返回一个形状为 [2, 3] 的新的张量。
2023-05-19 15:25:07 365 1
原创 torch.sum()函数用法
在上面的例子中,我们首先定义了一个形状为 (2, 2) 的张量,并将其存储到变量 a 中,然后使用。的方式来计算沿着变量 a 的第二个维度 (即每一行)的和,并返回一个形状为 (2,) 的张量。函数计算出 a 中所有元素的和,最终得到 tensor(10)。print(b) # 输出:tensor(10)用于计算输入张量的所有元素之和。的值来求解沿着张量的某一个维度的和。例如,给定一个张量 a,可以使用。在上面的例子中,我们通过设置。在 PyTorch 中,python复制代码。
2023-05-19 15:22:29 3683 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人