算法的时间复杂度是什么?如何计算?

我们在度量一个程序(或者一个算法)执行时间的两种方法

  1. 第一种最简单,我们直接在分别运行需要比较的算法计算个需要的时间然后进行比较
    当然这种解决方式也是存在问题的:是要想对设计的算法的运行性能进行评测,需要实际运行该程序;是所得到的时间统计量依赖于计算机的硬件、软件等环境因素,这种方式要在同一台计算机的相同状态下运行,才能比较哪一种算法效率更高
  2. 第二种通过分析某个算法的时间复杂度来判断哪一个算法更优

我们在学习时间复杂度前需要了解时间频度的概念

时间频度

一个算法花费的时间于算法中语句执行次数成正比,哪个算法中语句执行的次数多,它花费的时间就多。一个算法中的语句执行次数称之为语句频度或者时间频度。记为T(n)

1、时间频度的常数项可以忽略

举例说明
在这里插入图片描述
由图中的表可知:

  1. 2n+20和2n随着n变大,执行曲线无线接近,20可以忽略
  2. 3n+10和3n随着n变大,执行曲线无线接近,10可以忽略

2、时间频度的低次项可以忽略

在这里插入图片描述

结论:

  1. 2n2+3n+10和2n2随着n变大,执行曲线无线接近,可以忽略3n+10
  2. n2+5n+20和n2随着n变大,执行曲线无线接近,可以忽略5n+20

3、时间频度可以忽略系数

在这里插入图片描述
结论

  1. 随着n值变大,5n2+7n和3n2+2n,执行曲线重合,说明这种情况下,5和3可以忽略
  2. 而n3+5n和6n3+4n,执行曲线分离,说明多少次放是关键

然后我们再介绍时间复杂度

时间复杂度

  1. 一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)时T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度,简称时间复杂度
  2. T(n)不同,但时间复杂度可能相同。如:T(n)=n2+7n+6与T(n)=3n2+2n+2他们的T(n)不同,但时间复杂度相同,都称为O(n2)
  3. 计算时间复杂度的方法:
    ①用常数1代替运行时间中的所有加法常数
    ②需改后的运行次数函数中,只保留最高阶
    ③取出最高阶项的系数

常见的时间复杂度

在这里插入图片描述

常见的算法时间复杂度由小到大一次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
从图中可见,我们应该尽可能避免使用指数阶的算法

① 常数阶
在这里插入图片描述
② 对数阶
在这里插入图片描述
③ 线性阶
在这里插入图片描述

④ 线性对数阶
在这里插入图片描述
⑤ 平方阶
在这里插入图片描述

算法的平均时间复杂度和最坏时间复杂度

  1. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
  2. 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
  3. 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。

在这里插入图片描述

算法的空间复杂度

  1. 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
  2. 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
  3. 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值