问题描述
给你 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0) 。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器。
示例 1:
输入:[1,8,6,2,5,4,8,3,7]
输出:49
解释:图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例 2:
输入:height = [1,1]
输出:1
示例 3:
输入:height = [4,3,2,1,4]
输出:16
示例 4:
输入:height = [1,2,1]
输出:2
提示:
n = height.length
2 <= n <= 3 * 104
0 <= height[i] <= 3 * 104
思路
这一题思路比较精巧,可以用双指针做,时间复杂度是O(n) ,因为两个指针共扫描n次。不过需要数学证明,这里就不给出了,可以去leetcode看下证明。
AC代码
class Solution {
public:
int maxArea(vector<int>& height) {
int res = 0;
for (int i = 0, j = height.size() - 1; i < j; ) {
int mn = min(height[i], height[j]);
res = max(res, (j - i) * mn);
if (height[i] < height[j]) i ++;
else j --;
}
return res;
}
};