C语言-蓝桥杯-分巧克力
问题描述
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入格式
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
样例输入
2 10
6 5
5 6
样例输出
2
思路
看到这道题,就想到了枚举加检查,但是数据规模都是100000,暴力枚举复杂度是O(n^2),肯定会超时。
改进方法就是用二分法处理正方形的边长。
#include <stdio.h>
int h[100000],w[100000];
int n,k;
int main()
{
int i,sum,left=1,right=100000,mid,res;
scanf("%d %d",&n,&k);
for(i=0;i<n;i++)
{
scanf("%d %d",&h[i],&w[i]);
}
while(left<=right)//二分法
{
sum=0;
mid=(left+right)/2;
for(i=0;i<n;i++)
{
sum+=(w[i]/mid)*(h[i]/mid);
}
if(sum<k) right=mid-1;
else
{
left=mid+1;
res=mid;//更新结果
}
}
printf("%d",res);
return 0;
}