近年来,预训练语言模型已然成为自然语言处理(NLP)领域中备受瞩目的技术之一。预训练模型可以在大规模文本语料上进行自监督学习,从而获得丰富的语言学知识,并通过在下游任务上进行微调,实现出色的性能。Prompt Learning(提示学习)则是一种最新的预训练模型范式,通过在预训练过程中提供特定任务的提示信息,来指导模型学习,帮助模型更好地利用任务的上下文信息,从而提高模型的性能,也使得模型可以在Few-shot、Zero-shot等低资源场景下保持良好的表现。
本期前瞻洞察从Prompt Learning预训练范式出发,讲述什么是Prompt、为什么要Prompt以及怎么样Prompt,最后会结合当下最火热的科技ChatGPT进行简单的Prompt范式说明,更直观地展现Prompt Learning的魅力。
1、引言
图注:Prompt魔法能力[1]
人工智能的发展一直是科技界的热门话题。在过去的几十年里,人们一直在探索着如何让机器更加智能化。然而,尽管现代机器学习技术取得了长足的进步,但是机器在某些领域的表现仍然远远不如人类。其中最关键的原因之一,机器往往缺乏人类的常识和推理能力。这使得机器在面对一些复杂的任务时表现不佳,例如自然语言理解、文本生成等。
为了解决这个问题,研究人员一直在尝试各种各样的方法。其中最有前途的方法之一就是Prompt Learning。Prompt Learning是一种基于模板的机器学习方法,它通过给模型提供一些“提示”来帮助其更好地理解任务,从而提高模型的性能。
训练模型时,首先需要定义一个提示模板,这个模板包含了一些提示信息,例如关键词、短语、句子等。然后,将提示模板与训练数据一起输入到模型中进行训练。在预测时,可以将提示模板与待预测的数据一起输入到模型中,从而帮助模型更好地理解输入数据。模型训练采用的提示信息通常是可以被人类理解的,这也使得可以更好地理解模型在做决策时的逻辑和推理过程,模型预测时通过结合不同的Prompt模式即可完成不同的任务需求。同时,通过添加提示信息可以帮助模型更好地利用已有的标注数据,学习到更通用的特征表示,从而使得模型在低资源场景任务中仍然可以保持较好的表现。
2、Prompt Learning 衍生之路