特征工程-lightgbm

赛题地址: 电力需求预测挑战赛

接上篇简单的赛题数据观察(主要包括:缺失值查询pandas-isnull-sum函数、不同特征[一列数据称为一个特征]类型查询pandas-info函数、基本的统计变量[以特征为单位进行查看]pandas-describe函数。

今天主要通过lightgbm进行简单的时序预测分析,推荐使用Mulit-GBDT(Kaggle榜单机器学习常用冠军算法)。

首先,导入相关的库

import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error, mean_squared_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
import matplotlib.pyplot as plt
warnings.filterwarnings('ignore')

需要注意的是lightgbm如果你新安装的话,在网上查找的教程年份稍微远一点可能代码不适用,常见的错误可以直接到bing.com上搜索。

通过简单的数据查看(昨天那篇是分析不同房屋[id]在train.csv中的数据量发现可能存在数据不均衡的问题,今天的baseline是分析房屋类型[type]的均值。

type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'], color=['blue', 'green'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()

图片还没学会上传,暂时没有上传。

通过绘制的图片可以看出不同房屋类型均值差异还是较为明显,说明该变量可以作为很好的一个特征分析入手点。

简单来说,比如说2分类问题,一共有A和B两个类型。其中A类型方差为0.1,均值为1;B类型方差为0.1,均值为10。
那么此时如果有一个新的数据点为3,我们可以认为该点为A类型(因为更靠近A,如果是B类型的话,偏差过大,没有其他特征参考很难令人信服)

选择一个房屋[制定id即可],查看数据情况。

specific_id_df = train[train['id'] == '00037f39cf']
print("Special id has total {} lines.".format(str(len(specific_id_df))))
plt.figure(figsize=(10, 5))
plt.plot(specific_id_df['dt'], specific_id_df['target'], marker='o', linestyle='-')
plt.xlabel('DateTime')
plt.ylabel('Target Value')
plt.title("Line Chart of Target for ID '00037f39cf'")
plt.show()

上篇提交的结果是用最近10天的数据均值作为预测结果,这次我们使用近似的思路:使用历史平移特征窗口统计特征作为人工构建的两个特征。

简单解释:即移动平均差不多的思想。

  • 历史平移特征:通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。
  • 窗口统计特征:窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻。
# 合并训练数据和测试数据,并进行排序
data = pd.concat([test, train], axis=0, ignore_index=True)
data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)

# 历史平移
for i in range(10,30):
    data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)
    
# 窗口统计
data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3

# 进行数据切分
train = data[data.target.notnull()].reset_index(drop=True)
test = data[data.target.isnull()].reset_index(drop=True)

# 确定输入特征
train_cols = [f for f in data.columns if f not in ['id','target']]

# 定义训练函数
def time_model(lgb, train_df, test_df, cols):
    # 训练集和验证集切分
    trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']
    val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']
    # 构建模型输入数据
    train_matrix = lgb.Dataset(trn_x, label=trn_y)
    valid_matrix = lgb.Dataset(val_x, label=val_y)
    # lightgbm参数
    lgb_params = {
        'boosting_type': 'gbdt',
        'objective': 'regression',
        'metric': 'mse',
        'min_child_weight': 5,
        'num_leaves': 2 ** 5,
        'lambda_l2': 10,
        'feature_fraction': 0.8,
        'bagging_fraction': 0.8,
        'bagging_freq': 4,
        'learning_rate': 0.05,
        'seed': 2024,
        'nthread' : 16,
        'verbose' : -1,
    }
    # 训练模型
    model = lgb.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], 
                      categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)
    # 验证集和测试集结果预测
    val_pred = model.predict(val_x, num_iteration=model.best_iteration)
    test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)
    # 离线分数评估
    score = mean_squared_error(val_pred, val_y)
    print(score)
       
    return val_pred, test_pred
    
lgb_oof, lgb_test = time_model(lgb, train, test, train_cols)

# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)

时序数据在预测的时候一定要注意时间顺序,如果你使用需要预测的时间天数的话,很有可能导致穿越问题(使用未来数据预测历史数据)。
后续有时间重新写更复杂全面点的

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值