电商平台订单交易数据分析

本文详述了某电商平台2019年订单交易数据的清洗、分析过程,包括数据提取、异常值处理,重点分析了各月销售趋势、渠道用户占比、用户购买行为,并构建了RFM模型,揭示了用户复购率低的现象,提出了提升用户留存和复购率的运营策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

本文根据某电商平台的实际订单交易数据,对2019年的交易情况进行分析,包括数据清洗、可视化、分析以及构造建立RFM模型。

1加载提取数据

1.1加载

在这里插入图片描述
数据包含如下字段:orderID:订单编号;userID:用户编号;goodsID:商品编号;orderAmount:订单价格;payment:付款金额;chanelID:流量渠道类别;platfromType:下单平台;orderTime:下单时间;payTime:付款时间;chargeback:是否退单

1.2提取

1.2.1根据业务需求提取2019年数据

在这里插入图片描述

1.2.2处理与业务流程不符合数据——支付时间间隔过长

在这里插入图片描述

1.2.3处理与业务流程不
评论 48
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值