L3-023 计算图(链式求导+bfs拓扑|dfs)

原题链接

“计算图”(computational graph)是现代深度学习系统的基础执行引擎,提供了一种表示任意数学表达式的方法,例如用有向无环图表示的神经网络。 图中的节点表示基本操作或输入变量,边表示节点之间的中间值的依赖性。 例如,下图就是一个函数 ( 的计算图。

在这里插入图片描述

现在给定一个计算图,请你根据所有输入变量计算函数值及其偏导数(即梯度)。 例如,给定输入,,上述计算图获得函数值 (;并且根据微分链式法则,上图得到的梯度 ∇。

知道你已经把微积分忘了,所以这里只要求你处理几个简单的算子:加法、减法、乘法、指数(e​x​​,即编程语言中的 exp(x) 函数)、对数(ln,即编程语言中的 log(x) 函数)和正弦函数(sin,即编程语言中的 sin(x) 函数)。

友情提醒:

常数的导数是 0;x 的导数是 1;e​x​​ 的导数还是 e​x​​;ln 的导数是 1;sin 的导数是 cos。
回顾一下什么是偏导数:在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。在上面的例子中,当我们对 x​1​​ 求偏导数 / 时,就将 x​2​​ 当成常数,所以得到 ln 的导数是 1,x​1​​x​2​​ 的导数是 x​2​​,sin 的导数是 0。
回顾一下链式法则:复合函数的导数是构成复合这有限个函数在相应点的导数的乘积,即若有 (,(,则 /。例如对 sin 求导,就得到 cos。
如果你注意观察,可以发现在计算图中,计算函数值是一个从左向右进行的计算,而计算偏导数则正好相反。

输入格式:
输入在第一行给出正整数 N(≤),为计算图中的顶点数。

以下 N 行,第 i 行给出第 i 个顶点的信息,其中 ,。第一个值是顶点的类型编号,分别为:

0 代表输入变量
1 代表加法,对应 x​1​​+x​2​​
2 代表减法,对应 x​1​​−x​2​​
3 代表乘法,对应 x​1​​×x​2​​
4 代表指数,对应 e​x​​
5 代表对数,对应 ln
6 代表正弦函数,对应 sin
对于输入变量,后面会跟它的双精度浮点数值;对于单目算子,后面会跟它对应的单个变量的顶点编号(编号从 0 开始);对于双目算子,后面会跟它对应两个变量的顶点编号。

题目保证只有一个输出顶点(即没有出边的顶点,例如上图最右边的 -),且计算过程不会超过双精度浮点数的计算精度范围。

输出格式:
首先在第一行输出给定计算图的函数值。在第二行顺序输出函数对于每个变量的偏导数的值,其间以一个空格分隔,行首尾不得有多余空格。偏导数的输出顺序与输入变量的出现顺序相同。输出小数点后 3 位。

输入样例:

7
0 2.0
0 5.0
5 0
3 0 1
6 1
1 2 3
2 5 4
输出样例:
11.652
5.500 1.716

题解
将每个节点的输入节点编号存入到节点结构体中,然后先正向bfs求每个节点的输出值,然后再方向求每个节点的导数,注意求导数的时候每个节点存储的导数是其输出变量的导数,求解的时候应该按照不同路径的导数相加,同一路径上的导数相乘。
无论是正向还是方向均应按照拓扑序求解

#include<bits/stdc++.h>
#include<cmath>
#define x first
#define y second
#define send string::npos
#define lowbit(x) (x&(-x))
#define left(x) x<<1
#define right(x) x<<1|1
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
typedef struct Node * pnode;
const int N = 1e6 + 10;
const int M = 3 * N;
const int INF = 0x3f3f3f3f;
const ll LINF = 0x3f3f3f3f3f3f3f3f;
const int Mod = 1e9;
int out[N],in[N];
struct Node{
   
    double v,f;    //v代表此节点输出值,f代表输出值导数
    int la,lb;
    int op;
}node[N];
int head[N],cnt;
int q[N],tt = 0,hh = 0;
vector<int>s;   //起始节点
struct Edge{
   
    int v,next;
}edge[2 * M];
void add(int u,int v){
   
    edge[cnt].v = v;
    edge[cnt].next = head[u];
    head[u] = c
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值