AcWing 1671.三角形

AcWing 1671.三角形

题目链接

题目描述:
Farmer John 想要给他的奶牛们建造一个三角形牧场。
有 N 个栅栏柱子分别位于农场的二维平面上不同的点 (X1,Y1)…(XN,YN)。
他可以选择其中三个点组成三角形牧场,只要三角形有一条边与 x 轴平行,且有另一条边与 y 轴平行。
Farmer John 可以围成的牧场的最大面积是多少?
保证存在至少一个合法的三角形牧场。

输入格式
输入的第一行包含整数 N。
以下 N 行每行包含两个整数 Xi 和 Yi,均在范围 −104…104 之内,描述一个栅栏柱子的位置。

输出格式
由于面积不一定为整数,输出栅栏柱子可以围成的合法三角形的最大面积的两倍。

数据范围
3≤N≤100
输入样例:

4
0 0
0 1
1 0
1 2

输出样例:

2

样例解释
位于点 (0,0)、(1,0) 和 (1,2) 的木桩组成了一个面积为 1 的三角形。所以,答案为 2⋅1=2。
只有一个其他的三角形,面积为 0.5。

思路:
枚举每一个点,看看是否可以构成一个满足条件的三角形。如果可以构成一个满足条件的三角形,那么就计算它的面积乘二,因为题目中说:由于面积不一定为整数,输出栅栏柱子可以围成的合法三角形的最大面积的两倍。所以用底乘高即可。判断是否是一个满足条件的三角形,只要满足点 i 和点 j 的横坐标相等,点 j 和点 k 的纵坐标相等。

AC代码

#include<bits/stdc++.h>
using namespace std;
struct node
{
    int x,y;
}a[110];
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        cin>>a[i].x>>a[i].y;
    }
    int ans=0;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    for(int k=1;k<=n;k++)
    {
        if(i==j||i==k||j==k) continue;
        if(a[i].x==a[j].x&&a[j].y==a[k].y)
        {
            ans=max(ans,(abs(a[i].y-a[j].y)*(abs(a[j].x-a[k].x))));
        }
    }
    cout<<ans<<endl;
    return 0;
}

如果觉得写的还不错,点个赞吧 ^ v ^

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

稚皓君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值