AcWing 1671.三角形
题目描述:
Farmer John 想要给他的奶牛们建造一个三角形牧场。
有 N 个栅栏柱子分别位于农场的二维平面上不同的点 (X1,Y1)…(XN,YN)。
他可以选择其中三个点组成三角形牧场,只要三角形有一条边与 x 轴平行,且有另一条边与 y 轴平行。
Farmer John 可以围成的牧场的最大面积是多少?
保证存在至少一个合法的三角形牧场。
输入格式
输入的第一行包含整数 N。
以下 N 行每行包含两个整数 Xi 和 Yi,均在范围 −104…104 之内,描述一个栅栏柱子的位置。
输出格式
由于面积不一定为整数,输出栅栏柱子可以围成的合法三角形的最大面积的两倍。
数据范围
3≤N≤100
输入样例:
4
0 0
0 1
1 0
1 2
输出样例:
2
样例解释
位于点 (0,0)、(1,0) 和 (1,2) 的木桩组成了一个面积为 1 的三角形。所以,答案为 2⋅1=2。
只有一个其他的三角形,面积为 0.5。
思路:
枚举每一个点,看看是否可以构成一个满足条件的三角形。如果可以构成一个满足条件的三角形,那么就计算它的面积乘二,因为题目中说:由于面积不一定为整数,输出栅栏柱子可以围成的合法三角形的最大面积的两倍。所以用底乘高即可。判断是否是一个满足条件的三角形,只要满足点 i 和点 j 的横坐标相等,点 j 和点 k 的纵坐标相等。
AC代码
#include<bits/stdc++.h>
using namespace std;
struct node
{
int x,y;
}a[110];
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i].x>>a[i].y;
}
int ans=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=1;k<=n;k++)
{
if(i==j||i==k||j==k) continue;
if(a[i].x==a[j].x&&a[j].y==a[k].y)
{
ans=max(ans,(abs(a[i].y-a[j].y)*(abs(a[j].x-a[k].x))));
}
}
cout<<ans<<endl;
return 0;
}
如果觉得写的还不错,点个赞吧 ^ v ^