AcWing 853. 有边数限制的最短路

本文介绍了AcWing853题目的解题思路,该题目要求在有向图中找到从1号节点到n号节点最多经过k条边的最短路径。给出了Bellman-Ford算法的详细描述,包括其能处理负权边和限定边数的最短路径问题。代码部分展示了如何实现该算法,并通过实例验证了算法的正确性。在最后一段,提供了Bellman-Ford算法检测负权回路的原理和应用情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目来源AcWing 853. 有边数限制的最短路

一、题目描述

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出从 1 1 1 号点到 n n n 号点的最多经过 k k k 条边的最短距离,如果无法从 1 1 1 号点走到 n n n 号点,输出 impossible

注意:图中可能 存在负权回路

输入格式
第一行包含三个整数 n , m , k n,m,k n,m,k

接下来 m m m 行,每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

输出格式
输出一个整数,表示从 1 1 1 号点到 n n n 号点的最多经过 k k k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围
1 ≤ n , k ≤ 500 , 1≤n,k≤500, 1n,k500,
1 ≤ m ≤ 10000 , 1≤m≤10000, 1m10000,
任意边长的绝对值不超过 10000 10000 10000

输入样例:

3 3 1
1 2 1
2 3 1
1 3 3

输出样例:

3

二、Bellman-Ford算法

Bellman-Ford算法可以处理 有负权边 的最短路问题、只经过 k k k 条边的最短路问题,但是求负权边的最短路一般只用spfa算法,因此除了 k k k 边最短路问题,我们一般都不使用 Bellman-Ford算法。该算法的时间复杂度为 O ( n m ) O(nm) O(nm)

Bellman-Ford算法伪代码:
本质思想:尝试能否利用 源 点 → a → b 源点 → a → b ab 来减少 源 点 → b 源点 → b b 的距离。

// 边的结构体定义
struct 
{
	int a, b, w;
} e[M];

// 进行k次迭代,表示最多经过k条边可以到达的最短路
for (int i = 0; i < n; i++)
{
	// 每次循环所有边,格式为(a, b, w),即a → b,权重是w
	// 因此这里所有边的遍历方式不一定使用邻接表,可以用傻瓜式的结构体数组存储
	// dist[i] 表示从源点到i的距离
	for (int j = 0; j < m; j++)
		dist[b] = min(dist[b], dist[a] + w); // 松弛操作
}

完成上述循环之后能够满足对于所有的边都有 d i s t [ b ] ≤ d i s t [ a ] + w dist[b] ≤ dist[a] + w dist[b]dist[a]+w

这里有一个问题需要声明:如果图中 存在负权回路,则最短路不一定存在。而 Beillman-Ford算法可以判断出图中是否存在负权回路。因为上述伪代码中的迭代次数是有意义的,比如说我们当前迭代了 k k k 次,此时获得的 d i s t dist dist 数组是 从源点出发经过不超过 k k k 条边走到每个点的最短距离。如果我们在进行第 n n n 次迭代的时候, d i s t dist dist 数组又发生了变化,则说明在这个最短路中,存在一条经过 n n n 条边的最短路,有 n n n 条边说明有 n + 1 n + 1 n+1 个结点,但是我们一共只有 n n n 个点,因此由于抽屉原理,这 n + 1 n + 1 n+1 个点中一定有两个结点完全一样,那么这个路径上一定存在负环

因此,Bellman-Ford算法可以用来寻找负环,但是一般而言,寻找负环我们常常使用 spfa判断负环算法,我们后面会介绍。

但是有一类题目只能用Bellman-Ford算法来写,那就是经过最多 k k k 条边的最短路径问题,这种问题只能使用Bellman-Ford算法。

三、代码

代码中有不少细节,注意看注释。

#include <iostream>
#include <cstring>
using namespace std;

const int N = 510, M = 1e4 + 10;

struct Edge
{
    int a, b, w;
} edge[M];

int dist[N], backup[N];
int n, m, k;

int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    // 题目要求不超过k条边
    for (int i = 0; i < k; i++)
    {
        // 所有迭代过程中都是依赖上一次的dist
        // 如果不做备份,当前dist值会被其他的边更新过了,导致错误
        memcpy(backup, dist, sizeof dist);
        for (int j = 0; j < m; j++)
        {
            int a = edge[j].a, b = edge[j].b, w = edge[j].w;
            // 只用上一次迭代的结果更新当前的距离
            dist[b] = min(dist[b], backup[a] + w);
        }
    }
    
    // 为什么要这么判断呢?
    // 因为可能存在: i号结点 → n号结点的边,边权为-2
    // 但是i号结点本来就不可达,dist[i]是0x3f3f3f3f,dist[n]是0x3f3f3f3f
    // 但是dist[n]可以被dist[i]更新为0x3f3f3f3f - 2,因此不可以用“==”符号
    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

int main()
{
    scanf("%d%d%d", &n, &m, &k);
    
    for (int i = 0; i < m; i++)
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edge[i] = {a, b, w};
    }
    
    int t = bellman_ford();
    
    if (t == -1) puts("impossible");
    else printf("%d\n", t);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁头娃撞碎南墙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值