004 秒杀下单

文章详细探讨了高并发秒杀系统中的超卖问题及其解决方案,包括单机锁、Redis的原子性操作、队列以及分布式锁(如Mysql和Redis)的应用。同时,还涉及下单性能优化和数据一致性保障的方法,如缓存、异步处理和事务一致性策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

秒杀下单业务步骤:
1.数据校验(身份信息,token,手机号,是否开始,库存是否充足,是否开启秒杀,是否上架)
2.检查库存,锁定库存
3.扣减库存
4.更新库存
5.实现下单

面临的问题:
1.业务问题:如何在高并发模式下,保证库存不会出现超卖
2.性能问题:如何在高并发模式下,保证下单操作性能
3.数据一致性问题:如何在高并发模式下,保证数据一致性

超卖问题

原因:
在高并发模式下,多线程出现了数据脏读,抢占cpu资源情况下,出现了数据脏读,从而操作了多下订单,因此出现超卖

超卖:比如10个商品,商品数量为0的时候,下单了100个订单,多下单90个
超卖

如何解决超卖问题:
1.上锁(意味着性能下降,一旦上锁,意味着程序的串行化的执行)
2.原子性操作
3.队列(Queue,Redis,队列)

方案一

给业务进行上锁,让库存扣减变成一个原子的操作,让下单的操作是串行化执行,只有当第一个线程执行结束后,后一个线程才能开始执行,从而控制库存超卖。
注意:在分布式环境下,需要使用分布式锁来控制库存

方案二

利用redis的单线程模式:实现原子性操作,让库存得到控制。Redis服务具备天然的原子性的操作特性,Redis的每一个操作都是一个原子性的操作,因此可以利用Redis的这个特性,实现库存控制,且Redis是高性能的内存数据库,利用redis实现性能与业务的完美结合
原子性操作
以上数据存储特点:把库存数据进行单独的存储,扣减库存直接使用库存进行扣减,而不是使用商品中数据进行扣减(因为使用商品数据扣减,必然会经过2步操作,这2步不是原子性,除非使用lua)
此时扣减库存的方式
1.扣减库存:hincrement(“seckill_goods_stock_1”,-1) #此操作是一个原子操作,下一个线程看见的是上一个线程执行的结果,线程之间具有先后顺序
2.判断库存是否存在
优点:既兼顾了性能问题,又解决了业务库存超卖问题

方案三

队列:Redis队列(其他队列)都具有原子性的操作:Redis-list队列实现库存超卖解决方案
特点:
1.队列的长度等于库存数量
2.队列中存储的数据是此商品的id
3.每一个商品都对应一个队列
此时扣减库存,只需要pop一个队列的元素即可,因为队列的长度等于库存数量,因此pop元素相当于扣减库存;此操作也是原子操作

aop锁(单机锁)

超卖:比如模拟1000个用户,产生1000个订单,实际上被卖出75个商品,因此超卖925个订单!!!
超卖
使用Lock锁进行库存控制:Lock lock = new ReentrantLock(true);

//开始加锁
lock.lock();

finally{
//释放锁
lock.unlock;
}

以上加锁方式不能控制库存
锁事务冲突
锁事务冲突

aop锁(单机锁)

问题:针对以上的锁,事务冲突的问题
解决方案:锁上移(在事务开始之前加锁,事务结束后释放锁)
实现方式:表现层加锁,aop增强的方式进行加锁
aop锁

pom.xml

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-aop</artifactId>
        </dependency>


LockAspect.java

package com.example.aop;


import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.context.annotation.Scope;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

@Component
@Scope
@Aspect
@Order(1)
public class LockAspect {

    private Lock lock = new ReentrantLock(true);

    @Pointcut("@annotation(com.example.aop.ServiceLock)")
    public void lockAspect(){

    }

    //增强方法
    @Around("lockAspect()")
    public Object around(ProceedingJoinPoint joinPoint){
        Object obj = null;
        //上锁
        lock.lock();

        try {
            //执行业务
            obj = joinPoint.proceed();
        } catch (Throwable e) {
            throw new RuntimeException(e);
        } finally {
            //释放锁
            lock.unlock();
        }

        return obj;

    }
}


ServiceLock.java

package com.example.aop;


import java.lang.annotation.*;

@Target({ElementType.PARAMETER,ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface ServiceLock {
    String description() default "";
}


功能测试:没有出现超卖,加锁已经实现了库存的控制

分布式锁

为什么要使用分布式锁:
在JUC单机锁的模式下,只能在单个jvm进程中起作用,但是在集群,分布式部署模式下,无法使用单机锁控制多个jvm进程的并发修改问题,无法实现库存超卖控制
在集群服务,分布式服务模式下,存在多个jvm进程对共享资源并发修改的问题,单机锁无法控制在进程级别的共享资源互斥访问的问题,因此在分布式环境下,必须使用分布式锁
第三方锁

分布式应用原理:保证jvm进程对共享资源的互斥访问,防止jvm进程对共享资源并发修改
应用场景:
1.秒杀场景
2.12306抢票
3.退款

Mysql分布式锁

Mysql实现分布式锁几种方式:
1.乐观锁,悲观锁(这种方式在分布式模式下无法控制库存,单机可以控制)
在多进程模式下,多个事务出现了数据脏读,从而无法控制超卖,虽然加上行锁,但是锁失效后,事务还未提交,此时别的进程事务来读取数据,读到了脏数据
2.单独设计一个表,实现记录锁的操作(加锁:插入一条数据,释放锁:删除一条数据)

Redis分布式锁

ServiceRedisLock.java

package com.example.redis;


import java.lang.annotation.*;

@Target({ElementType.PARAMETER,ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface ServiceRedisLock {
    String description() default "";
}


LockRedisAspect.java

package com.example.redis;



import org.aspectj.lang.ProceedingJoinPoint;
import org.aspectj.lang.annotation.Around;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Pointcut;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Scope;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;

import javax.servlet.http.HttpServletRequest;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

@Component
@Scope
@Aspect
@Order(1)
public class LockRedisAspect {

    @Autowired
    private HttpServletRequest request;



    @Pointcut("@annotation(com.example.redis.ServiceRedisLock)")
    public void lockAspect(){

    }

    //增强方法
    @Around("lockAspect()")
    public Object around(ProceedingJoinPoint joinPoint){

        Object obj = null;

        //获取秒杀id
        String requestURI = request.getRequestURI();
        String killId = requestURI.substring(requestURI.lastIndexOf("/")-1,requestURI.lastIndexOf("/"));

        //上锁

        boolean res = RedissLockUtil.tryLock("seckill_goods_lock_"+killId, TimeUnit.SECONDS,3,10);

        lock.lock();

        try {
            //执行业务
            if (res){
                obj = joinPoint.proceed();
            }

        } catch (Throwable e) {
            throw new RuntimeException(e);
        } finally {
            //释放锁
            if (res){
                RedissLockUtil.unlock("seckill_goods_lock_"+killId);
            }
        }

        return obj;

    }
}


在分布式下测试,可以控制库存

下单性能优化

优化一:从缓存中查询商品数据,不再从数据库查询
优化二:扣减库存,从缓存中开始扣减库存,不考虑数据一致性问题,只需要考虑数据最终一致性即可
优化三:异步化改造,下单的时候,只需要把订单数据传入到队列即可表示下单成功,后面队列的消费者来异步消费消息,实现下订单操作
下单的写的操作,当并发量比较大的时候,写操作会竞争锁资源,造成数据库性能下降。因此对这块代码进行异步化改造
异步处理:消费者在消费端进行监听,如果发现队列中有数据,立马消费队列中数据,然后处理业务



//判断库存是否还存在,如果不存在,那么就直接返回

Integer stockStatus = (Integer) redisTemplate.opsForValue().get(Constants.REDIS_GOODS_END_KEY+killId);

//判断
if(stockStatus!=null && stockStatus.equals(HttpStatus.SEC_GOODS_END)){
	return HttpResult.error("商品已无库存");
}


//优化一:从缓存中查询商品数据,不再从数据库查询

TbSeckillGoods seckillGoods = (TbSeckillGoods) redisTemplate.opsForValue().get("SECKILL_GOODS_STOCK_"+killId);


/**
*库存扣减
*/
private boolean reduceStock(Long killId){
	Long stockNum = redisTemplate.opsForValue.increment("SECKILL_GOODS_STOCK_"+killId,-1);
//扣减成功
if(stockNum > 0){
	return true;
}else if(stockNum == 0){
	//最后一次扣减,stock=1,表示此时库存已经售卖完毕
	//添加标识,表示库存已经扣减完毕
	redisTemplate.opsForValue().set(Constants.REDIS_GOODS_END_KEY+killId,HttpStatus.SEC_GOODS_END);
	return true;
}
//扣减失败
return false;
}





//第二步优化,从缓存中扣减库存,保证这个操作的原子性
boolean res = this.reduceStock(killId);
//判断库存是否扣减成功
if(!res){
	return HttpResult.error("下单失败");
}


//下单
TbSeckillOrder order = new TbSeckillOrder();
order.setSeckillId(killId);
order.setUserId(userId);
//使用队列,把订单数据入队
Boolean succ = SeckillQueue.getMailQueue().produce(order);
if(!succ){
	return HttpResuLt.error("秒杀失败");
}
return HttpResult.ok("秒杀成功");



public void run(ApplicationArguments var){
	new Thread(() -> {
		LOGGER.info("提醒队列启动成功");
		//开启一个线程,一直监听bockingQueue队列
		while(true){
			try {
				//进程内队列
				TbSeckillOrder order = SeckillQueue.getMailQueue().consume();
				if(order!=null){
					//从队列中获取订单,执行下单操作
					seckillService.startAsyncKilled(order);
				}
			} catch (InterruptedException e) {
				e.printStackTrace();
			}
		}
	}).start();
}

数据一致性

CAP定理
C:一致性(数据一致性:牺牲性能为代价)
A:可用性(性能提升,暂时不追求一致性)
P:分区容错性
redis数据
CAP定理要求在软件架构的设计中,不能同时追求一致性,可用性,要么追求强一致性,要么只实现高性能
问题1:从缓存中扣减库存,存在缓存中缓存库存和数据库库存不一致现象
为了性能考虑,牺牲掉一致性,暂时把数据放在缓存中,放弃了一致性的问题,但是最终需要把数据变成一致性的状态。
如何处理?
(1)最终的一致性:支付完成后,同步库存
(2)异步的方式,同步库存

问题2:下单操作,扣减库存操作不是一个原子操作,一旦下单异常失败,本地事务会回滚,但是redis库存已经发生扣减

解决方案:
(1)异常机制对业务补偿
(2)缓存一致性

解决一致性问题

异步同步库存

发生场景,从缓存中扣减库存,但是数据库的库存没有发生任何的变化,因此可以使用异步的方式同步库存。
异步同步库存
引入新的问题,发送消息的操作和本地事务的操作不是一个原子性
半消息机制
消息一致性:为了保证本地消息,本地事务一致性
事务消息
Rocketmq提供的事务消息,解决本地事务和数据库一致性问题,让发送消息的动作和本地事务是原子性的操作

缓存一致性:先操作数据库,再操作redis
缓存一致性
同时操作数据库,缓存的时候,面临数据库和缓存数据一致性的问题,因为本地事务异常,缓存异常都可能造成数据一致性问题,因此解决这类问题的时候,只需要先操作数据库,后操作缓存即可
1.下单操作数据库出现了异常,本地事务回滚,此时缓存没有进行操作,因此数据是一致性的状态
2.下单成功,缓存操作异常,数据库本地事务会回滚,由于缓存没有操作成功,因此数据还是一致状态


@Transactional
@Override
public HttpResult startAsyncKilled(TbSeckillOrder order) {
	//为了实现缓存,数据库一致性,先操作数据库,后操作缓存
	order.setCreateTime(new Date());
	order.setStatus("0");
	order.setMoney(BigDecimal.ZERO);
	seckillOrderMapper.insertSelective(order);

	//第二步优化,从缓存中扣减库存,保证这个操作的原子性
	boolean res = this.reduceStock(order.getSeckillId());
	//判断库存是否扣减成功
	if(!res){
		return HttpResult.error("下单失败");
	}
	return HttpResult.ok();
}

对于第二点,理解是不正确的。在给出的代码中,即使下单操作(即数据库插入)成功,但后续的缓存操作(reduceStock方法)失败,数据库事务不会因为缓存操作失败而回滚。

下面是详细的解释:

下单操作数据库出现了异常,本地事务回滚,此时缓存没有进行操作,因此数据是一致性的状态
这是正确的。如果seckillOrderMapper.insertSelective(order);抛出异常,由于方法被@Transactional注解,Spring会管理事务并回滚它。这意味着插入到数据库中的订单记录会被撤销,缓存操作(reduceStock)还没有执行,因此数据保持了一致性。
下单成功,缓存操作异常,数据库本地事务会回滚,由于缓存没有操作成功,因此数据还是一致状态
这是不正确的。在Spring的事务管理中,事务的回滚通常是由未检查的异常(通常是RuntimeException或其子类)触发的。如果reduceStock方法失败但没有抛出异常(只是返回了false),那么数据库事务不会回滚。这意味着订单已经成功插入到数据库中,但缓存中的库存没有被正确扣减,这会导致数据不一致。
为了避免这种情况,你可以采取以下几种策略:

手动抛出异常:如果reduceStock方法失败,你可以手动抛出一个运行时异常来触发事务回滚。
使用分布式事务:如果缓存操作非常关键,且需要保证与数据库操作的一致性,你可以考虑使用分布式事务来管理跨多个资源(如数据库和缓存)的事务。
补偿事务:实现一个补偿事务或后台任务来定期检查并修复不一致的状态。
优化缓存操作:确保缓存操作尽可能可靠,并考虑使用缓存的本地事务或原子操作(如果可用)。
重新设计系统:在某些情况下,重新设计系统以避免直接操作缓存可能是一个更好的选择。例如,你可以只操作数据库,并让缓存自动过期或异步更新。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

简 洁 冬冬

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值