信号的时域、空域特性(关于波束赋形状(空域角度)-MVDR算法的基础理解)

本文深入探讨了信号处理中时域与空域特性的关系,通过分析远场模型和平面波,阐述了奈奎斯特定理在时域采样和空域阵列中的应用。并以MVDR算法为例,解释了时域傅里叶变换与空域波束形成的等价性,以及如何从时空角度理解功率谱。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信号的时域、空域特性 

2017-09-01 07:17

一、时域与空域特性

以远场模型(平面波)为例,假设均匀线阵接收的为窄带信号,假设相邻振元间隔为d,入射角为:

从空域坐标来看,相邻振元的间隔为:

等价到时间轴来看,采样点的间距为:,对应时间间隔为:

二、时、空域与采样定理

A、空域角度理解

相邻振元的相位差为:

以干涉仪为例,如果存在相位模糊,有

k为非零整数,如果希望不出现相位模糊

对应扫描边界,则有

容易证明,同干涉仪一样,均匀线阵谱估计中的导向矢量,如果不满足上面的约束条件,同样会有多峰的问题。

B、时域角度理解

前文提到,采样点对应的时间间隔为

,即采样周期。空域均匀线阵对应时域均匀采样,采样频率:

入射信号的频率为:

如果采样无混叠,需要满足Nyquist采样定理:

该约束条件等价于:

可以看出均匀线阵的相位无模糊对应时域均匀采样的奈奎斯特定理。多说一句,如果是非均匀线阵、圆阵等形式,可以理解成对应维度的非均匀采样;从空域角度理解,非均匀阵列可以解决模糊问题,从时域角度理解,稀疏采样/非均匀采样可以突破奈奎斯特采样定理。

三、时、空域及功率谱

波束形成主要对感兴趣的方向进行增强/抑制,而谱估计更多是参数估计问题,前者操作多为主动,后者操作多为被动,MVDR算法对二者均适用。这里暂且抛开应用场景,仅从时、空角度理解功率谱的”谱”特性。

接着上文的时域、空域思路,这里先从时域的角度来表述,为了简化均不考虑加窗情形。

A、时域角度理解

对于N点均匀采样的信号,对其进行傅里叶变换:

的相关函数为:

容易证明有如下对应关系:

而相关函数对应的傅里叶变换为功率谱密度,可以求解功率谱密度:

B、空域角度理解

N个均匀线阵接收单元,对应的波束形成为:

即空域的波束形成可以理解为时域的傅里叶变换,

从而空域的功率谱密度可以等价为:

考虑到时域、空域具有等价性,空域的功率谱这么理解是合理的。

现在以常用的MVDR算法来理解这种等价性:

接收信号:

MVDR就是含有等式约束的最优化问题:

可以求解:

这个时候,如果将最优的w带入y,空域角度理解:y对应就是波束形成的结果。时域角度理解:y对应为傅里叶变换的结果。

通常MVDR的结果为的输出,根据上文分析可知,该结果从时域理解就是功率谱(差一个常数),所以从空域角度称作“谱”其实也是可以被接受的,对应功率(谱):

因为这是在空域,为了与时域功率谱的名字加以区别,可以称其为空间谱。

具体空间谱名称怎么由来,本文并没有考证。本文只是提供了一种理解“空间谱”名称的角度,至少MUSIC等算法的“谱”便与此不同,或许MUSIC等算法只是继承了“空间谱”这个名词也未可知。
 

转载于:https://www.sohu.com/a/168802088_768739

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值