• 博客(10)
  • 收藏
  • 关注

原创 机器阅读理解新模型,让机器像人一样思考

对于那些没有可用的树库的场景,可以有效地应用无监督的SRL方法。这是继2019年3月,云从科技和上海交通大学提出的新模型登顶RACE排行榜第一名,成为世界首个超过人类排名的模型后,在自然语言处理(NLP)领域对机器阅读理解的进一步深入研究。这也意味着,其对自然语言的处理将从浅层次的理解思考迈向更深层次的归纳总结、知识引用、推理归因以及知识图谱和迁移学习,这是趋势,也是方向。本工作揭示了显性语义信息在自然语言理解上的有效性,这表明显式上下文语义可以与最新的预训练语言表示有效地集成融合,从而进一步提高性能。

2025-06-04 16:41:26 731

原创 无监督学习: Kaiming一作 动量对比(MoCO)论文笔记

最近在读Kaiming大神的Momentum Contrast (MoCo) 论文,里面提到"",所以顺着contrastive梳理几篇相关论文。Kaiming在MoCo的摘要里面最后一句提到“” ,感觉最近学界和业界对unsupervised learning的热情和关注也越来越强烈。。

2025-06-04 16:37:40 617 2

原创 学术速递1 | 呼吸特征筛查新冠肺炎 | 百度视频动作识别 | 监控打架行为检测等

在本文中,我们提出了一个全面的数据分析框架,以充分分析收集到的探测请求,以提取与大型社交活动中的人群行为相关的三种模式,并借助统计、可视化和无监督机器学习。最后,通过与时间的结合,将轨迹转换为时空模式,揭示轨迹持续时间随时间的变化,以及人群运动的总体趋势随时间的变化。随后,我们首先应用具有双向和注意机制的GRU神经网络(BI-AT-GRU)对6种临床上有意义的呼吸模式(Eupnea,Tachypnea,Bradypnea,Biots,Cheyne-Stokes和Central-Apnea)进行分类。

2025-06-04 16:36:15 1040

原创 有感而发:从Supercell的开发模式浅谈AI安防项目的落地

最近看完了一本书,书里介绍了国外一家叫做Supercell的游戏开发公司的开发模式,关于里面提到的等词汇,再结合最近几年作为产品经理,陆陆续续做了不少安防项目后,不由地深受触动。

2025-06-04 16:29:01 925

原创 谷歌和CMU论文:使用元学习生成伪标签

对于分类问题,如何产生合适的目标分布,对于深度学习的过程以及泛化能力都至关重要。之前的方法大多采用固定的策略通过不同网络、平滑或者温度参数产生目标分布。本文作者提出通过考虑验证集合性能和元学习来自适应的生成目标分布。相关论文:

2025-06-04 16:28:13 823

原创 通过图像混合和标签平滑提升无监督学习性能

在无监督学习中,标签平滑能够起到平滑决策边界,减小方差的作用。使用图像混合结果作为输入,可以使输出结果更加平滑。无监督学习训练的epoch通常要比有监督学习多很多。

2025-06-04 16:27:13 853

原创 CVPR 2020 | SCOT: 基于最优传输理论的图像语义匹配

图像语义匹配最近逐渐引起了大家的关注,我们将图像语义匹配问题转换成最优传输的问题,解决了多对一匹配以及背景匹配的问题。论文:csyanbin/SCOT​github.com/csyanbin/SCOT​编辑参考文献ICCV, 2019.CVPR2020.

2025-06-04 16:20:01 801

原创 深度强化学习调参技巧:以D3QN、TD3、PPO、SAC算法为例

深度强化学习 Deep Reinforcement Learning 简称为DRL运行DRL算法代码(实际使用+调整参数),需要更多DL基础阅读DRL算法论文(理解原理+改进算法),需要更多RL基础深度强化学习算法能训练能智能体: 机械臂取物、飞行器避障、控制交通灯、机器人移动、交易股票、训练基站波束成形选择合适的权重超越传统算法。一开始会问:算法那么多,要选哪个?训练环境怎么写?算法怎么调参?收益函数 reward function 要怎么改?

2025-06-04 16:16:10 735

原创 CVPR 2023 | 云从科技及联合研究团队提出:基于掩码预测的点云视频自监督学习

从静态点云中解析现实世界已经取得了巨大的成就。最近,对点云视频的理解也越来越受关注。与此同时,自监督学习可以从未标注的数据中提取高质量的表征,这将为标注成本高昂的点云视频理解任务带来帮助。因此,我们探索了以自监督的方式从点云视频中学习表征的方法。尽管基于对比学习和掩码预测的自监督学习范式已经在图像和静态点云领域显示出了强大的有效性,但是将这些方法直接扩展到点云视频上仍存在诸多挑战。在本文中,我们提出了PointCMP,一种用于点云视频自监督学习的对比掩码预测框架。

2025-06-04 16:10:53 961

原创 云从科技与上海交通大学联合研究团队的《基于扩散模型的音频驱动说话人生成》

动态连续性属性信息建模模块中,由于头部姿势和眨眼等个性化人脸属性是随机的和具有一定概率性的,因此为了对人脸属性的概率分布进行建模并生成长时间序列,研究者提出采用了基于transformer的变分自动编码器(VAE)的概率模型,一是VAE可以用于平滑离散的属性信息并映射为高斯分布,二是利用Transformer的注意力机制充分学习时间序列的帧间长时依赖性。(3)动态连续性属性信息建模;通过个性化属性的学习以及扩散模型的优化,我们的方法生成具有个性化的头部运动,更加逼真眨眼信息,唇-音同步性能更好的人脸视频。

2025-06-04 14:58:47 848

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除