一、题目
给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。
输入:
height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:
6
解释:
上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)
二、解法
2.1 单调栈
解题思路:维护一个单调递减栈,如果出现比栈顶元素大的元素,则进行雨水单位计算
class Solution {
public:
int trap(vector<int>& height) {
stack<int> s; // 单调栈
int top = 0, ans = 0, curr = 0;
while (curr < height.size()) {
// 从所接雨水的最低层开始处理
while (!s.empty() && height[curr] > height[s.top()]) { // 构造单调栈
top = s.top();
s.pop();
if (s.empty()) { // 若栈中原只有一个元素,接不成雨水(特指只有第一个元素)),防止出错
break;
}
int distance = curr - s.top() - 1; // 距离(此处不能用curr - top)因为s.top()与top的间隔不一定是1
int rain_height = min(height[curr], height[s.top()]) - height[top]; // 所接到雨水的高度
ans += rain_height * distance; // 计算面积
// while循环将栈中比curr低的或等于curr的元素清空
}
s.push(curr++);
}
return ans;
}
};
复杂度分析
- 时间复杂度:O(n),n是height数组的长度。因为列表中的元素最多各执行一次入栈和出栈一次。
- 空间复杂度:O(n),n是height数组的长度。栈空间的大小不会超过n。
2.2 动态规划
解题思路:利用动态规划,可以在O(n)的时间内预处理的得到每个位置两边的最大高度。创建两个长度为n的数组leftMax和rightMax,leftMax[i]表示下标i及其左边的位置中height的最大高度; rightMax[i]则表示下标i及其右边的位置中,height的最大高度。
class Solution {
public:
int trap(vector<int>& height) {
int n = height.size();
if (n <= 0)
return 0;
// 从左向右扫描
vector<int> leftMax(n);
leftMax[0] = height[0]; // 初始化动态数组
for (int i = 1; i < n; ++i) {
leftMax[i] = max(leftMax[i-1], height[i]);
}
// 从右向左扫描
vector<int> rightMax(n);
rightMax[n-1] = height[n-1];
for (int i = n - 2; i >= 0; --i) {
rightMax[i] = max(rightMax[i+1], height[i]);
}
int ans = 0;
for (int i = 0; i < n; ++i) {
ans += min(rightMax[i], leftMax[i]) - height[i]; // 计算扫描的重叠部分单位
}
return ans;
}
};
复杂度分析
- 时间复杂度:O(n),n是height数组的长度。计算数组leftMax和rightMax 的元素值各需要遍历数组 height 一次,计算能接的雨水总量还需要遍历一次。
- 空间复杂度:O(n),n是height数组的长度。需要创建两个长度为n的数组。