二分法—LeetCode35、704

二分法起源于数学中找函数零点的问题:

对于区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫二分法。

解题思路:使用二分法查找的时候需注意该数组是有序的,一般为升序,所以使用二分法查找时先用快速排序法将其排序,这个方法较省时间。因此在刷题的时候注意给定的是否为有序数组或集合

时间复杂度:O(logn),其中 n 为数组的长度。二分查找所需的时间复杂度为 O(logn)。

空间复杂度:O(1)。我们只需要常数空间存放若干变量。

 二分法查找注意点:区间问题。左闭右闭,还是左闭右开(一般语言默认),根据区间要注意代码循环的范围,是小于等于,还是小于,例如left<=right or left<=right,  left=mid+1  or left=mid

具体情况都要根据题意来分析

常规二分查找法

    public int searchInsert(int[] nums, int target) {
        int n = nums.length;

        // 定义target在左闭右闭的区间,[low, high]
        int low = 0;
        int high = n - 1;

        while (low <= high) { // 当low==high,区间[low, high]依然有效
            int mid = low + (high - low) / 2; // 防止int溢出
            if (nums[mid] > target) {
                high = mid - 1; // target 在左区间,所以[low, mid - 1]
            } else if (nums[mid] < target) {
                low = mid + 1; // target 在右区间,所以[mid + 1, high]
            } else {
                // 1. 目标值等于数组中某一个元素  return mid;
                return mid;
            }
        }
        // 2.目标值在数组所有元素之前 3.目标值插入数组中 4.目标值在数组所有元素之后 return right + 1;
   //因为存在一种情况是 target 大于数组中的所有数,此时需要插入到数组长度的位置。
        return high + 1;
    }

代码摘录代码随想录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JagTom

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值