- 博客(1)
- 收藏
- 关注
原创 NLP经典论文导读(推荐阅读顺序)
大纲one-hot编码时代简介one-hot编码在提出词向量(Distributed representation, Word embedding, word representation)之前所有的神经网络模型(或者传统的机器学习)对词数据的处理都是将词转换为one-hot编码进行处理。NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值
2021-03-07 15:37:34 5798
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人