信息安全第一章总结

一、整除

1.设a,b是任意两个整数Z,其中b≠0.如果存在一个整数q,使得等式a=qb成立,则称b整除a或者a被b整除,记做b|a。b叫做a 的因数,a叫做b的倍数。q写成a/b或者    。

2.0是任何非零整数的倍数,即a|0,这里a≠0,a∈Z.

3.1是任何整数的因数,即1|a,a∈Z。

4.任何非零整数a是自己的倍数,也是自己的因数,即a|a,这里a≠0,a∈Z。

5.设整数n≠0,±1,如果除了平凡因数±1,±n外,n没有其他因数,那么n叫做素数(或质数、不可约数);否则n叫做合数。

6.当整数n≠0,±1时,n和-n同为素数或合数。因此,若没有特别声明,素数总是指正整数,通常写成p。

7.设n是一个正合数,p是n的一个大于1的最小正因数,则p一定是素数,且p≤     。

8.穷举法:一种针对密码的破译方法,即把所有的情况都罗列出来一个个试。

9.设n>1是一个正整数,若__-1是素数,则a=2,且n是素数。

10.设p是一个素数,整数____________称为梅森素数。

二、Euclid欧几里得算法(辗转相除法)

1.Euclid除法,也称带余除法。设a,b是两个整数,其中b>0,则存在唯一的整数q,r,使得a=qb+r (0≤r<b);

2.公因子:设a1…,an是n(n≥2)个整数。若整数d是它们中每一个数的因数,那么d就叫做a1,…,an的一个公约数(公因数)。

3. 如果整数a1,…,an不全为零,那么a1,…,an的所有公约数中最大的一个公约数叫作最大公约数,记作gcd(a1,…,an)或(a1,…,an)。

    特别的,当(a1,…,an)=1,称(a1,…,an)互素或互质。

4.a,b是不全为零的整数,a,b的最大公约数d=(a,b)是集合{sa+tb | s,t∈Z}中的最小正整数。

5.设a,b为不全为零的整数,当且仅当c∈{ax+by | x,y∈Z},即当且仅当(a,b)|c,方程ax+ay=c有整数解。

   特别的,若(a,b)=1,则存在整数x,y,使得ax+by=1.说明只有当a和b互素时,ax=1(mod b)才有解。

6.设b 是任一正整数,则(0,b)=b。

7.设a,b,r,是三个不全为零的整数。如果a=qb+r,其中q是整数,则(a,b)=(b,r)。

三、扩展的Euclid欧几里得算法(求最大公约数)

1.设a,b是任意两个正整数,则Sna+tnb=(a,b),对于将j=0,1,……,n-1,这里Sj,tj 归纳的定义为_____________

2. a=169,b=121,求整数s,t,使得sa+tb=(a,b)

3.该算法具有重要的应用,如当a,b互素时,可求出s来,满足sa+tb=1,即sa=1 (mod b),s在____的乘法群中称为a的乘法逆元。

4.定理 设a,b是两个正整数,则Sna+tnb = (a,b),对于j=0,1,…,n-1,这里Sj,tj归纳的定义为

 5.扩展的欧几里得算法主要用于求乘法的逆元。例如,假设b<m,当(m,b)=1时,sm+tb=(m,b)=1,因此,tb=1 (mod m).于是找到了t,这是b在___的乘法群中的乘法逆元。

四、算术基本定理

1.最小公倍数:m=[a1,…,an];m=[a1,a2]表示m为a1,a2的最小公倍数

2.定理1.23

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值