- 博客(2)
- 收藏
- 关注
原创 神经网络与深度学习第四次帖
输出维度不定或者是1(直接最终理解结果)使用RNN进行IMDB评论,随着输入的增加,会产生“遗忘”问题,RNN误差反传,每个时间步的隐状态和输出可以写为:,ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1, 𝑤ℎ)\n𝑜𝑡 = 𝑔(ℎ𝑡, 𝑤𝑜),通过一个目标函数在所有𝑇个时间步内 评估输出𝑜𝑡和对应的标签𝑦𝑡之间的差异:按照链式法则:ℎ𝑡既依赖于ℎ𝑡−1,又依赖于𝑤ℎ , 其中ℎ𝑡−1的计算也依赖于𝑤ℎ。该部分包括以下内容:序列模型,数据预处理,文本处理与词嵌入,RNN模型,RNN模型实现,RNN误差反传。
2024-05-04 15:39:25 891 1
原创 深度学习与神经网络第三次帖子
全连接层:网络的最后包括两个全连接层,这些层用于整合之前卷积层提取的特征,并最终输出预测结果。在YOLOv1中,全连接层的输出包括预测的边界框位置、置信度(即边界框内是否含有目标的置信度)以及类别概率。输出层:YOLO的输出层是通过重整全连接层的输出得到一个7x7x30的输出张量。随机初始化的卷积层:接下来的4个卷积层没有进行预训练,而是在目标检测的训练过程中随机初始化并训练。比较不同模型:通过比较不同模型的AP值,可以确定哪个模型在保持较高召回率的情况下能够取得更高的准确率,从而选择最优模型。
2024-04-22 22:34:15 371
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人