3.0 前言
首先来学习2003年以前的主流与经典,用符号构建的人工智能。
下下一章会来介绍2003年以前的非主流,而现在已经变为主流的,03年当时,本书还叫做“反应式Agent”的,用层次构建的Agent。除此以外,还有另外一种方法,不完全是符号推理,下一章会完成这个任务。
回到正题,举个例子,搞个扫地机器人。
摄像头传进来信息后,全转换成逻辑的语句,比如图中,机器人看到门,像素传到知识库表示,再到产生决策"Stop!",再到动作"Brake!",然后小滚轮就停了。
构造这个机器人,有俩问题要解决:
- 转换问题 传感器信号转换成符号。就是图中Interp到知识库那里。
- 表示和推理问题 转换出来的符号继续推理,决策出行动。就是图中知识库到Plan再到Action。
第一个,有关的工作有视觉、语音理解、学习;第二个问题,有关问题是知识表示、自动推理、自动规划等。
另提一句,03年这本书的作者说,这两个问题“都还没有解决”,“甚至是一些普通的问题,如常识推理,都是很困难的问题”。
但作者同时说了,这些问题很有帮助,“想法仍然很有吸引力”,因为假设有,就可以解释智能Agent如何决策,如何行动,这就方便优化。
优化的方法之一就是不断细化目标到行为的过程。不过,把Agent作为定理证明器时,没有这种细化哦。它直接当Agent的想法直接可以执行,下面我们就来康康。
3.1 Agent作为定理证明器
慎思型Agent
又叫做慎思型Agent(Genesereth and Nilsson, 1987, chapter. 13)。这种Agent可是很讲逻辑的嗷☝️🤓,比如它的脑壳里,有这种:
第一个,就是相信阀门221是开的。
然后它的脑壳和人也是一样的,也会出错。
比如检查了221是开的,巡检员认为这个是开的。结果因为赶着和我去吃烧烤,没仔细,其实它是关的。Agent也一样,脑壳里记得221是开的,其实是911是开的。还可能设计这个脑壳的人的脑壳也不好,设计的时候就出了问题,导致Agent对开着的阀门的解释和常人也不一样。
建模
下面进入符号的世界:
设L是经典一阶谓词逻辑句子的集合,并且设是L数据库的集合,即L(公式)集合的集合。因此,Agent的脑壳里就是D的元素,D的成员用
,
,……表示。Agent的内部状态,也就是脑壳,可以简单表示成集合D的成员。
Agent的决策过程通过一组演绎规则建模,就是说Agent脑壳知道这些规矩
,这是一些简单的逻辑推理规则。
如果可以从数据库仅只使用演绎规则
证明公式
,则可以写成
。就是说,Agent通过自己的脑壳判断,这个是行得通的。
Agent感知函数还是(为啥叫“还是”?因为之前推导过。感兴趣的朋友可以参考第2章的内容):