搭建最简单的扫地机器人? 《多Agent系统引论》第3章 演绎推理Agent 小结

3.0 前言

首先来学习2003年以前的主流与经典,用符号构建的人工智能。

下下一章会来介绍2003年以前的非主流,而现在已经变为主流的,03年当时,本书还叫做“反应式Agent”的,用层次构建的Agent。除此以外,还有另外一种方法,不完全是符号推理,下一章会完成这个任务。

回到正题,举个例子,搞个扫地机器人。

摄像头传进来信息后,全转换成逻辑的语句,比如图中,机器人看到门,像素传到知识库表示,再到产生决策"Stop!",再到动作"Brake!",然后小滚轮就停了。

构造这个机器人,有俩问题要解决:

  1. 转换问题   传感器信号转换成符号。就是图中Interp到知识库那里。
  2. 表示和推理问题   转换出来的符号继续推理,决策出行动。就是图中知识库到Plan再到Action。

第一个,有关的工作有视觉、语音理解、学习;第二个问题,有关问题是知识表示、自动推理、自动规划等。

另提一句,03年这本书的作者说,这两个问题“都还没有解决”,“甚至是一些普通的问题,如常识推理,都是很困难的问题”。

但作者同时说了,这些问题很有帮助,“想法仍然很有吸引力”,因为假设有,就可以解释智能Agent如何决策,如何行动,这就方便优化。

优化的方法之一就是不断细化目标到行为的过程。不过,把Agent作为定理证明器时,没有这种细化哦。它直接当Agent的想法直接可以执行,下面我们就来康康。

3.1 Agent作为定理证明器

慎思型Agent

又叫做慎思型Agent(Genesereth and Nilsson, 1987, chapter. 13)。这种Agent可是很讲逻辑的嗷☝️🤓,比如它的脑壳里,有这种:

第一个,就是相信阀门221是开的。

然后它的脑壳和人也是一样的,也会出错。

比如检查了221是开的,巡检员认为这个是开的。结果因为赶着和我去吃烧烤,没仔细,其实它是关的。Agent也一样,脑壳里记得221是开的,其实是911是开的。还可能设计这个脑壳的人的脑壳也不好,设计的时候就出了问题,导致Agent对开着的阀门的解释和常人也不一样。

建模

下面进入符号的世界:

设L是经典一阶谓词逻辑句子的集合,并且设是L数据库的集合,即L(公式)集合的集合。因此,Agent的脑壳里就是D的元素,D的成员用\Delta\Delta _1,……表示。Agent的内部状态,也就是脑壳,可以简单表示成集合D的成员。

Agent的决策过程通过一组演绎规则\rho建模,就是说Agent脑壳知道这些规矩\rho,这是一些简单的逻辑推理规则。

如果可以从数据库\Delta仅只使用演绎规则\rho证明公式\varphi,则可以写成。就是说,Agent通过自己的脑壳判断,这个是行得通的。

Agent感知函数还是(为啥叫“还是”?因为之前推导过。感兴趣的朋友可以参考第2章的内容):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值