计算机视觉
文章平均质量分 63
研究生期间的研究方向:图像处理、车道线检测论文解读、代码分享
悬悬小
这个作者很懒,什么都没留下…
展开
-
传统车道线检测之黄白线、虚实车道线检测(附python代码)
文章目录前言一、虚实线的检测二、黄白线的检测前言针对传统图像处理方法的车道线检测,提出黄白、虚实车道线的区别。之前的算法流程及代码参考:https://blog.csdn.net/m0_46988935/article/details/109234900一、虚实线的检测车道线的线形主要有虚线和实线,但大多数车道线检测算法对这两者并不进行区分。然而在对道路环境进行感知中,虚线和实线的区分具有非常重要的作用,区分两者有利于车辆进一步推断自身所在环境,比如在车道保持算法中对虚线和实线的偏离预警应有不同原创 2021-07-20 18:25:34 · 5240 阅读 · 4 评论 -
ECCV2020超快车道线检测算法——Ultra Fast Structure-aware Deep Lane Detection论文浅读
文章目录前言一、深度分割的局限性二、目前车道线检测的难点三、超快速车道线检测算法1.算法定义2.如何解决速度的问题3.如何解决“no-visual-clue”的问题4.总体结构图5.算法缺点前言 随着智能互联、人工智能技术以及新能源技术的井喷式发展,自动驾驶技术发展的如火如荼。 车道线检测作为自动驾驶技术的重要组成部分,是实现自动驾驶的前提。因此近几年中,车道线检测任务成为了计算机视觉领域研究的热点。 对于车道线检测任务,目前主流的两种方法有:传统图像处理的方法深度分原创 2020-11-21 20:21:17 · 3794 阅读 · 0 评论 -
带你了解ICCV、ECCV、CVPR三大国际会议
文章目录前言一、ICCV、ECCV、CVPR是什么?1.ICCV2.ECCV3.CVPR二、三大会链接及论文下载链接前言 作为刚入门CV的新人,有必要记住计算机视觉方面的三大顶级会议 :ICCV,CVPR,ECCV,统称为ICE。 与其它学术领域不同,计算机科学使用会议而不是期刊作为发表研究成果的主要方式。目前国外计算机界评价学术水平主要看在顶级学术会议上发表的论文。特别是在机器学习、计算机视觉和人工智能领域,顶级会议才是王道。 但我国目前评价学术水平的标准主要看在学术期刊上发表SCI论文,这原创 2020-10-30 10:17:33 · 122057 阅读 · 4 评论 -
传统车道线检测-canny边缘检测-霍夫变换-完整代码(python)
文章目录前言一、什么是霍夫变换二、边缘检测算法三、实验环境四、传统车道线检测流程前言常见的车道线检测的方法大致可以分为三类:传统方法利用传统图像处理基数从摄像机拍摄的图像中提取车道线特征。传统图像处理与深度学习相结合的方法深度学习提取的特征信息不能直接使用,采用传统图像处理的方式对直线特征点进行聚类与拟合。端到端的深度学习的方法直接从输入图像中学习到车道线特征,无需复杂的预处理、手工特征提取和后处理,并结合车道线的各种几何先验知识,设计损失函数监督网络训练,提高车道线检测的鲁棒性和准确性。原创 2020-10-23 14:22:09 · 18298 阅读 · 6 评论