01.数据的存储

文章详细介绍了计算机中的数据类型,包括基本的内置类型如整型(char,short,int,long等)和浮点数(float,double),以及它们在内存中的存储方式,如原码、反码、补码的概念。同时,讨论了整型的大小端存储模式和浮点数的IEEE754标准,包括符号位、指数和有效数字的表示方法。
摘要由CSDN通过智能技术生成

1. 数据类型介绍

1)基本的内置类型:

char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数

2)类型的意义: 使用这个类型开辟内存空间的大小(大小决定了使用范围)。 如何看待内存空间的视角。

1.1 类型的基本归类:

1)整型家族:

[+1] = [0000 0001]原= [0000 0001]反= [0000 0001]补
[-1] = [1000 0001]原= [1111 1110]反 = [1111 1111]补
(-1) + (-127) = [1000 0001]原+ [1111 1111]原= [1111 1111]补+ [1000 0001]补 = [1000 0000]
char --unsigned char /signed char
//(signed)char:-128-127

//unsigned char:0-255//(0000 0000-1111 1111)(0-255)

short --unsigned short [int] /signed short [int] int --unsigned int /signed int long --unsigned long [int] /signed long [int] //char还是signed char还是unsigned char是取决于编译器的常见的编译器上char ==signed char
//字符在存储的时候存储的是ASCII码值,ASCII是整数,所以在归类的时候,字符属于整型家族

2)浮点数家族:

float double

//int开辟四个字节,一个字节是八个比特位

//内存里存放的是补码

//原码计算出现问题,所以应当用补码进行计算。

//原码--补码//取反加一

//补码--原码//取反加一

3)构造类型

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

4)指针类型

int *pi;
char *pc;
float* pf;
void* pv;

5)空类型

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
//void test()
//void test(void)
//void * p

2.整型在内存中的存储

//一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。

//例如:int a=10,其中a分配四个字节,一个字节等于八个比特位(2^3+2^2+2^1+2^0=15//16位//占四个比特位//故需要八个16为)

2.1 原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有 符号位数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码
反码+1就得到补码。

//整型存储补码形式的原因:

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统

一处理;

同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程

是相同的,不需要额外的硬件电路。


2.2 大小端介绍

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
址中。

//字节单位顺序不约束,可以正序、逆序、乱序。

//但为了方便用的一般为正序和逆序

//0x 11 22 33 44

//低位放到低,高位放到高---小端存储


例题:设计一个小程序来判断当前机器的字节序

//int a=1---00 00 00 01

//小端:01 00 00 00//拿出第一个字节为1//拿字节的时候是从前往后拿的

//大端:00 00 00 01(书写形式与原来一样,但其实是相反的)

int main()
{
    int a = 1;
    char * p = (char*)&a;//将a的地址,强制转换为a;再赋值给指针p//char1个字节
    if (1 == *p)
    {
        printf("小端\n");
    }
    else
    {
        printf("大端\n");
    }

    return 0;
}

//小端:返回1
//大端:返回0

int check_sys()
{
    int a = 1;
    char* p = (char*)&a;
    if (*p == 1)
        return 1;
    else
        return 0;
}
int check_sys()
{
    int a = 1;
    return *(char*)&a;
}

int main()
{
    int ret = check_sys();
    if (1 == ret)
    {
        printf("小端\n");
    }
    else
    {
        printf("大端\n");
    }
}

有符号位:整型提升时是按照变量的补码被截断时的最高位是什么进行补位的,如果截断后最高位即最左面的一位数为 1 则在最高位前补 1 ,如果最高位是 0 则在前面补 0 ,补够32位即int类型即可。

无符号的: 直接在被截断的前面补0即可。

EG1:

#include <stdio.h>

int main()
{
    char a = -1;
    //-1 是整数,32bit
    //1000 0000 0000 0000 0000 0000 0000 0001(原码)
    //1111 1111 1111 1111 1111 1111 1111 1110(反码)
    //1111 1111 1111 1111 1111 1111 1111 1111(补码)
    //1111 1111 - a截断(char截断,一个字节,只剩下比特位,从右端开始数八位,开始截断)
    //1111 1111 1111 1111 1111 1111 1111 1111 - 提升//最高位为1,补充1提升
    //
    signed char b = -1;
    unsigned char c = -1;
    //10000000000000000000000000000001
    //11111111111111111111111111111110
    //11111111111111111111111111111111(signed有符号补1)//-1
    //00000000000000000000000011111111(unsigned无符号补0)//char--%d是提升//255
    //
    //      -1    -1   
    printf("a=%d,b=%d,c=%d", a, b, c);
    //%d是打印有符号的整数
    //
    return 0;
}

EG2:

#include <stdio.h>
int main()
{
    char a = -128;
    //
    //100000000000000000000000 1000 0000(原码)
    //111111111111111111111111 0111 1111(反码)
    //1111 1111 1111 1111 1111 1111 1000 0000 (-128的补码)(4,294,967,168)
    //10000000 - a
    //1111 1111 1111 1111 1111 1111 1000 0000(截断补1)---1000 0000 0000 0000 0000 0000 0111 1111---1000 0000 0000 0000 0000 0000 1000 0000(-128)
    //补码---原码:取反加一
    printf("%u\n", a);//无符号
    printf("%d", a);

    return 0;
}

EG3:

#include <stdio.h>
int main()
{
    char a = 128;
    //128
    // 0000 0000 0000 0000 0000 0000 1000 0000
    // 截断:1000 0000
    // 提升:1111 1111 1111 1111 1111 1111 1000 0000
    //无符号:4294967168
    printf("%u\n", a);
    return 0;
}

EG4:

int main()
{
    char a = 128;
    //128
    // 0000 0000 0000 0000 0000 0000 1000 0000
    // 截断:1000 0000
    // 提升:1111 1111 1111 1111 1111 1111 1000 0000(补码)---(原码)---取反加一
    //       1000 0000 0000 0000 0000 0000 0111 1111+1
    //       1000 0000 0000 0000 0000 0000 1000 0000(-128)
    printf("%d\n", a);
    return 0;
}

EG5:

无符号+有符号

int main()
{
    int i = -20;
    //原码:1000 0000 0000 0000 0000 0000 0001 0100
    //反码:1111 1111 1111 1111 1111 1111 1110 1011
    //补码:1111 1111 1111 1111 1111 1111 1110 1100
    unsigned int j = 10;
    //原码反码补码:0000 0000 0000 0000 0000 0000 0000 1010
    printf("%d\n", i + j);
    //1111 1111 1111 1111 1111 1111 1111 0110
    //1000 0000 0000 0000 0000 0000 0000 1001
    //1000 0000 0000 0000 0000 0000 0000 1010(2^3+2^1=10)
}

EG6:

结果是死循环

#include <windows.h>

int main()
{
    unsigned int i;
    for (i = 9; i >= 0; i--)
    {
        printf("%u\n", i);//9 8 7 6 5 4 3 2 1 0
        //-1---无符号
        //补码:1111 1111 1111 1111 1111 1111 1111 1111---4294967295
        Sleep(1000);
    }

    return 0;
}

EG7:

int main()
{
    char a[1000];
    int i;
    for (i = 0; i < 1000; i++)
    {
        a[i] = -1 - i;
    }
    //128 + 127 
    //-1 -2 -3 -4 -5 .. -128 127 126 .... 5 4 3 2 1 0 -1 -2 ...
    printf("%d\n", strlen(a));//'\0' -- 0(遇到\0就截止)
    //char范围:-128-127
    return 0;
}

3. 浮点型在内存中的存储

常见的浮点数:
3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义

EG:浮点存储的例子

int main()
{
int n = 9;
float *pFloat = (float *)&n;//强制转换为float型
printf("n的值为:%d\n",n);//9
printf("*pFloat的值为:%f\n",*pFloat);//转换为float
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);//9.000000
return 0;
}
首先,将 0x0000 0009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,最后23位的有效数字M=000 0000 0000 0000 0000 1001。
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000
浮点数9.0等于二进制的1001.0,即1.001×2^3
9.0 -> 1001.0 ->(-1)^0×1.001^3 -> s=0, M=1.001,E=3+127=130
那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,
即10000010。
所以,写成二进制形式,应该是S+E+M,即
0 10000010 001 0000 0000 0000 0000 0000---十进制:1091567616
这个32位的二进制数,还原成十进制,正是 1091567616

3.1 浮点数存储规则

整型的取值范围: limits.h

浮点型的取值范围: float.h

num 和 *pFloat 在内存中明明是同一个数,但在浮点数和整数的解读是大大不同的。

浮点数在计算机内部的表示方法
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
M表示有效数字,大于等于1,小于2
2^E表示指数位

EG:

十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 =(-1)^0×1.01×2^2。

那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。

十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

//如果E为8位,它的取值范围为0~255;

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

//如果E为11位,它的取值范围为0~2047

IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的
xxxxxx部分。比如保存1.01的时
候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位
浮点数为例,留给M只有23位,
将第一位的1舍去以后,等于可以保存24位有效数字。
至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们
知道,科学计数法中的E是可以出
现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数, 对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
int main()
{
    float f = 3.14;

    //0.14
    //0.125
    //0.015
    //11.001....01010000010101010101010101010
    // 
    //float f = 9.0;
    //1001.0
    //(-1) ^ 0 * 1.001 *2^3
    //s = 0
    //e = 3
    //M = 1.001
    //0 1000 0010(3+中间数127(0111 1111)---0111 1111+0000 0011=1000 0010)  00100000000000000000000(001后面补1)
    //S E                                                                    M
    //0x41 10 00 00
    // 
    //float f = 5.5f;
    //101.1
    //1.011 *2^2
    //(-1)^0 *1.011 * 2^2
    //s=0
    //m=1.011
    //e=2
    //0 10000001 01100000000000000000000
    //
    //40 b0 00 00
    //
    return 0;
}
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进
制表示形式为:0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

补码:取反加一或减一取反

无符号和有符号相加为无符号数,%u输出为无符号,%d输出为有符号数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值