1.被围绕的区域
方法一:深度优先搜索
class Solution {
int n, m;
public void solve(char[][] board) {
n = board.length;
if (n == 0) {
return;
}
m = board[0].length;
for (int i = 0; i < n; i++) {
dfs(board, i, 0);
dfs(board, i, m - 1);
}
for (int i = 1; i < m - 1; i++) {
dfs(board, 0, i);
dfs(board, n - 1, i);
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (board[i][j] == 'A') {
board[i][j] = 'O';
} else if (board[i][j] == 'O') {
board[i][j] = 'X';
}
}
}
}
public void dfs(char[][] board, int x, int y) {
if (x < 0 || x >= n || y < 0 || y >= m || board[x][y] != 'O') {
return;
}
board[x][y] = 'A';
dfs(board, x + 1, y);
dfs(board, x - 1, y);
dfs(board, x, y + 1);
dfs(board, x, y - 1);
}
}
方法二:广度优先搜索
class Solution {
int[] dx = {1, -1, 0, 0};
int[] dy = {0, 0, 1, -1};
public void solve(char[][] board) {
int n = board.length;
if (n == 0) {
return;
}
int m = board[0].length;
Queue<int[]> queue = new LinkedList<int[]>();
for (int i = 0; i < n; i++) {
if (board[i][0] == 'O') {
queue.offer(new int[]{i, 0});
board[i][0] = 'A';
}
if (board[i][m - 1] == 'O') {
queue.offer(new int[]{i, m - 1});
board[i][m - 1] = 'A';
}
}
for (int i = 1; i < m - 1; i++) {
if (board[0][i] == 'O') {
queue.offer(new int[]{0, i});
board[0][i] = 'A';
}
if (board[n - 1][i] == 'O') {
queue.offer(new int[]{n - 1, i});
board[n - 1][i] = 'A';
}
}
while (!queue.isEmpty()) {
int[] cell = queue.poll();
int x = cell[0], y = cell[1];
for (int i = 0; i < 4; i++) {
int mx = x + dx[i], my = y + dy[i];
if (mx < 0 || my < 0 || mx >= n || my >= m || board[mx][my] != 'O') {
continue;
}
queue.offer(new int[]{mx, my});
board[mx][my] = 'A';
}
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (board[i][j] == 'A') {
board[i][j] = 'O';
} else if (board[i][j] == 'O') {
board[i][j] = 'X';
}
}
}
}
}
2.分割回文串
给你一个字符串
s
,请你将s
分割成一些子串,使每个子串都是 回文串 。返回s
所有可能的分割方案。
方法一:回溯 + 动态规划预处理
class Solution {
boolean[][] f;
List<List<String>> ret = new ArrayList<List<String>>();
List<String> ans = new ArrayList<String>();
int n;
public List<List<String>> partition(String s) {
n = s.length();
f = new boolean[n][n];
for (int i = 0; i < n; ++i) {
Arrays.fill(f[i], true);
}
for (int i = n - 1; i >= 0; --i) {
for (int j = i + 1; j < n; ++j) {
f[i][j] = (s.charAt(i) == s.charAt(j)) && f[i + 1][j - 1];
}
}
dfs(s, 0);
return ret;
}
public void dfs(String s, int i) {
if (i == n) {
ret.add(new ArrayList<String>(ans));
return;
}
for (int j = i; j < n; ++j) {
if (f[i][j]) {
ans.add(s.substring(i, j + 1));
dfs(s, j + 1);
ans.remove(ans.size() - 1);
}
}
}
}
3.克隆图
给你无向 连通 图中一个节点的引用,请你返回该图的 深拷贝(克隆)。
深拷贝和浅拷贝的区别_只有值的话,深拷贝和浅拷贝一样吗-CSDN博客
方法一:深度优先搜索
class Solution {
private HashMap <Node, Node> visited = new HashMap <> ();
public Node cloneGraph(Node node) {
if (node == null) {
return node;
}
// 如果该节点已经被访问过了,则直接从哈希表中取出对应的克隆节点返回
if (visited.containsKey(node)) {
return visited.get(node);
}
// 克隆节点,注意到为了深拷贝我们不会克隆它的邻居的列表
Node cloneNode = new Node(node.val, new ArrayList());
// 哈希表存储
visited.put(node, cloneNode);
// 遍历该节点的邻居并更新克隆节点的邻居列表
for (Node neighbor: node.neighbors) {
cloneNode.neighbors.add(cloneGraph(neighbor));
}
return cloneNode;
}
}
方法二:广度优先搜索
class Solution {
public Node cloneGraph(Node node) {
if (node == null) {
return node;
}
HashMap<Node, Node> visited = new HashMap();
// 将题目给定的节点添加到队列
LinkedList<Node> queue = new LinkedList<Node> ();
queue.add(node);
// 克隆第一个节点并存储到哈希表中
visited.put(node, new Node(node.val, new ArrayList()));
// 广度优先搜索
while (!queue.isEmpty()) {
// 取出队列的头节点
Node n = queue.remove();
// 遍历该节点的邻居
for (Node neighbor: n.neighbors) {
if (!visited.containsKey(neighbor)) {
// 如果没有被访问过,就克隆并存储在哈希表中
visited.put(neighbor, new Node(neighbor.val, new ArrayList()));
// 将邻居节点加入队列中
queue.add(neighbor);
}
// 更新当前节点的邻居列表
visited.get(n).neighbors.add(visited.get(neighbor));
}
}
return visited.get(node);
}
}
4.加油站
在一条环路上有
n
个加油站,其中第i
个加油站有汽油gas[i]
升。你有一辆油箱容量无限的的汽车,从第
i
个加油站开往第i+1
个加油站需要消耗汽油cost[i]
升。你从其中的一个加油站出发,开始时油箱为空。给定两个整数数组
gas
和cost
,如果你可以按顺序绕环路行驶一周,则返回出发时加油站的编号,否则返回-1
。如果存在解,则 保证 它是 唯一 的。
方法一:一次遍历
class Solution {
public int canCompleteCircuit(int[] gas, int[] cost) {
int n = gas.length;
int i = 0;
while (i < n) {
int sumOfGas = 0, sumOfCost = 0;
int cnt = 0;
while (cnt < n) {
int j = (i + cnt) % n;
sumOfGas += gas[j];
sumOfCost += cost[j];
if (sumOfCost > sumOfGas) {
break;
}
cnt++;
}
if (cnt == n) {
return i;
} else {
i = i + cnt + 1;
}
}
return -1;
}
}
5.只出现一次的数字
给你一个 非空 整数数组
nums
,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。你必须设计并实现线性时间复杂度的算法来解决此问题,且该算法只使用常量额外空间。
HashSet 和HashMap的区别、优缺点、使用场景_hashset hashmap区别-CSDN博客
class Solution {
public int singleNumber(int[] nums) {
Set<Integer> set=new HashSet<>();
for(int i=0;i<nums.length;i++){
if(set.contains(nums[i])){
set.remove(nums[i]);
}else{
set.add(nums[i]);
}
}
for(int i=0;i<nums.length;i++){
if(set.contains(nums[i])){
return nums[i];
}
}
return -1;
}
}