Python编写感知器算法

354 篇文章 106 订阅 ¥59.90 ¥99.00
本文介绍了使用Python编写感知器算法的过程,该算法是神经网络的基础,适用于二元分类问题。文章通过源代码展示了如何创建感知器类,包括权重初始化、预测和权重更新,并用异或问题作为例子进行训练和分类。
摘要由CSDN通过智能技术生成

Python编写感知器算法

感知器算法是神经网络的一种最基本形式,由于其简单有效,被广泛应用于分类问题中。本文将介绍使用Python编写感知器算法的过程,并附上相应的源代码。

首先,我们需要明确感知器算法的核心思想:根据输入的特征向量,通过一个线性组合和一个阈值函数,输出一个二元分类结果。具体来说,对于一个输入向量 x = [ x 1 , x 2 , . . . , x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值