基于DS证据理论和BP神经网络的不确定性信息融合问题-附MATLAB代码
一、前言
随着人们对数据精度的要求越来越高,不确定性信息处理的需求也越来越迫切。而DS(Dempster-Shafer)证据理论和BP神经网络作为两种常用的不确定性信息处理方法,在实际应用中被广泛使用。本文将着眼于DS证据理论与BP神经网络相结合,实现不确定性信息融合的问题,并提供附带MATLAB代码。
二、DS证据理论及BP神经网络的基本原理
-
DS证据理论
DS证据理论是一种将不确定性信息进行量化和处理的数学工具,其基本概念是证据函数、信任度和似然度。其中,证据函数表示某个命题所对应的证据的全部集合,信任度则是该命题成立的可信度量,似然度则是描述证据支持某个命题的强度。在DS证据理论中,将信任度和似然度结合起来计算合成信任度,从而实现对不确定性信息的融合与量化处理。 -
BP神经网络
BP神经网络是一种基于误差反向传播算法的有向图模型,是人工神经网络中应用最广泛的一种。其基本原理是通过梯度下降法,从而实现对神经元的权值和偏置的调整,在学习过程中不断优化网络结构,提高其泛化性能。
三、DS证据理论与BP神经网络的融合
将DS证据理论与BP神经网络相结合,可以实现对不确定性信息的融合,具体方法如下:
-
基于DS证据理论