【Python毕设|课设】基于Python的豆瓣电影数据分析与可视化系统(已经采集最新电影-哪吒2)-文末附下载方式以及往届论文

项目简介

在大数据与人工智能技术迅速发展的背景下,我们精心打造了一款基于Python的豆瓣电影数据分析与可视化系统,旨在为电影爱好者与专业人士提供全方位、个性化的观影服务体验。如今,电影观赏的需求已经超越了单一的娱乐享受,用户越来越关注个性化推荐、深度解析与社区互动的综合体验。

该系统包括六大核心模块:数据采集、数据概览、电影检索、数据管理、词云分析和多维可视化,构建了一个全面的服务框架。首先,系统通过Python技术从豆瓣平台抓取丰富的电影信息(如影片详情、评分、评论、标签等),确保数据采集的精准与合规。

所有采集的数据经过整理和清洗后,系统自动生成简洁明了的数据概览报告,概述了包括平均评分、热门类型、高评分导演和演员等关键指标。用户还可以通过强大的搜索功能,基于影片名称、关键词、导演、演员、类型和上映年份等多维度条件,快速定位自己感兴趣的内容。

平台还提供电影数据的精细化管理功能,允许用户对已有数据进行编辑操作,便于个性化整理与长期跟踪。通过词云图技术,平台能动态展示电影标题、演员、评分、简介等文本数据中的高频词汇,直观呈现热门话题、明星影响力以及观众情感倾向等。

此外,系统集成了多种数据可视化工具,通过时间序列分析、地理分析、类型分析等多维度展示,全面解析和呈现电影数据。

技术栈

  • 后端:Flask、PyMySQL、MySQL、urllib
  • 前端:Jinja2、Jquery、Ajax、layui
  • 数据可视化:Matplotlib、Pandas

开发环境

开发环境版本/工具
PYTHON3.6.8
开发工具PyCharm
操作系统Windows 10
内存要求8GB 以上
浏览器Firefox (推荐)、Google Chrome (推荐)、Edge
数据库MySQL 8.0 (推荐)
数据库工具Navicat Premium 15 (推荐)
项目框架FLASK

功能模块

在这里插入图片描述

数据采集

通过Python编程技术抓取豆瓣电影数据,包括影片基本信息(如标题、年份、类型)、导演、演员、评分、评论、简介等多元信息。

数据概览

对采集的电影数据进行清洗和整合,平台自动生成数据概览报告,涵盖平均评分、最受欢迎类型、热门导演和演员等关键指标,帮助用户快速了解数据集的整体特征与市场趋势。

电影检索

提供基于影片名称、关键词、导演、演员、类型、上映年份等条件的精确检索功能,满足用户的个性化需求。

数据管理

允许用户对采集的电影数据进行管理,如删除不需要的数据,以及对影片的图片、主演等属性进行编辑。

词云分析

使用词云图技术动态展示电影标题、演员、评分、简介等文本数据中的高频词汇,揭示观众关注的焦点和市场趋势。

数据可视化

平台支持丰富的可视化图表,帮助用户从不同角度解析电影数据,包括时间序列分析、评分分析、类型分析、导演与演员分析等。

数据库设计

表名:comments

字段名称数据类型是否必填注释
idint评论id
movieNamevarchar电影名字
commentContentvarchar电影评论

表名:movie

字段名称数据类型是否必填注释
idint电影id
directorsvarchar导演名
yearvarchar年份
typesvarchar类型
countryvarchar国家
langvarchar语言
timevarchar上映时间
movieTimevarchar时长
comment_lenvarchar评论人数
startsvarchar评分
summaryvarchar简介
commentstext评论
imgListvarchar图片链接
movieUrlvarchar视频链接
detailLinkvarchar详细链接

表名:user

字段名称数据类型是否必填注释
idint用户id
movieNamevarchar电影名字
commentContentvarchar电影评论

功能实现

电影检索模块

@app.route("/search/<int:searchId>",methods=['GET','POST'])
def search(searchId):
  email = session['email']
  allData = getAllData()
  data = []
  if request.method == 'GET':
    if searchId == 0:
      return render_template(
        'search.html',
        idData=data,
        email=email
      )
    for i in allData:
      if i[0] == searchId:
        data.append(i)
    return render_template(
        'search.html',
        data=data,
        email=email
      )
  else:
    searchWord = dict(request.form)['searchIpt']
    def filter_fn(item):
      if item[3].find(searchWord) == -1:
        return False
      else:
        return True
    data = list(filter(filter_fn, allData))
    return render_template(
      'search.html',
      data=data,
      email=email
    )

配套论文目录

在这里插入图片描述

运行截图

最新首页:

请添加图片描述

登录首页:
在这里插入图片描述
注册页面:
在这里插入图片描述

功能菜单:
在这里插入图片描述

首页可视化:
在这里插入图片描述

信息检索:
在这里插入图片描述

数据管理:
在这里插入图片描述

数据可视化:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

词云分析:

在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述

源码获取

源码、安装教程文档、项目简介文档以及其它相关文档已经上传到是云猿实战官网,可以通过下面官网进行获取项目!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值