实现篇:二叉树遍历收藏版


近期文章

二叉树是一种树形数据结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。在文件存储、金融决策、语言编译、数据压缩等方面广泛应用。

其二叉树遍历是一个常见场景:深度优先遍历(DFS)广度优先遍历(BFS)。其中深度遍历又常有三种遍历方式:前序遍历中序遍历后序遍历。以下就分别通过javascript语言总结实现这些常见遍历方式。

  • 节点结构:
function TreeNode(value) {
   
  this.value = value;
  this.left = this.right = null;
}

1 前序遍历

前序遍历顺序:根节点 → 左子树 → 右子树

1.1 递归实现

递归是最直观的方式,直接按照前序的定义顺序处理节点:

  • 代码简洁,直接映射前序逻辑。
  • 缺点:递归深度过大时可能导致栈溢出,适用于树深度较小的场景。
function preorder(root) {
   
  const result = []
  const loop = (node) => {
   
    if (node === null) return
    result.push(node.value)
    if (node.left !== null) loop(node.left)
    if (node.right !== null) loop(node.right)
  }
  loop(root)
  return result
}

1.2 迭代实现

通过栈模拟递归过程,避免栈溢出风险,适合处理大型树结构:

1.2.1 单栈法
  • 栈的入栈顺序为“右→左”,保证出栈顺序为“根→左→右”。
  • 时间复杂度:O(n),空间复杂度:O(n)。
function loopPreorder(root) {
   
  const result = []
  if (root === null) return result
  const stack = [root]
  while(stack.length) {
   
    const node = stack.pop()
    result.push(node.value)
    if (node.right !== null) stack.push(node.right)
    if (node.left !== null) stack.push(node.left)
  }
  return result
}
1.2.2 统一迭代法

通过标记法统一前、中、后序遍历的迭代逻辑。逻辑统一,但需要额外处理节点标记,适用于需要灵活切换遍历方式的场景。

function loopPreorder2(root) {
   
  const stack = [root], result = [];
  while (stack.length) {
   
    const node = stack.pop();
    // 双等号判断包括null和undefined
    if (node == null) <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

村头的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值