以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]
解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]]
输出:[[1,5]]
解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
思路:
我们解决区间问题的一般思路是先排序,然后观察规律。
按照左边界从小到大排序之后,如果 intervals[i][0] < intervals[i - 1][1]
即intervals[i]左边界 < intervals[i - 1]右边界,则一定有重复,因为intervals[i]的左边界一定是大于等于intervals[i - 1]的左边界。
即:intervals[i]的左边界在intervals[i - 1]左边界和右边界的范围内,那么一定有重复!
知道如何判断重复之后,剩下的就是合并了,如何去模拟合并区间呢?
其实就是用合并区间后左边界和右边界,作为一个新的区间,加入到result数组里就可以了。如果没有合并就把原区间加入到result数组。注意一些细节,这里需要用flag记录最后一个区间有没有合并,因为没有合并时,start和end表示的是intervals[i - 1]的左右边界。
class Solution {
public:
static bool cmp (const vector<int>& a, const vector<int>& b)
{
return a[0] < b[0];
}
vector<vector<int>> merge(vector<vector<int>>& intervals) {
vector<vector<int>> res;
if (!intervals.size()) return res;
sort(intervals.begin(), intervals.end(), cmp);
bool flag = false;
for (int i = 1; i < intervals.size(); i++)
{
int start = intervals[i - 1][0];
int end = intervals[i - 1][1];
while(i < intervals.size() && intervals[i][0] <= end)
{
end = max(end, intervals[i][1]);
if (i == intervals.size() - 1)
{
flag = true;
}
i++;
}
res.push_back({start, end});
}
if (flag == false)
{
res.push_back(intervals[intervals.size() - 1]);
}
return res;
}
};