数据结构概述:数据结构是计算机底层存储、组织数据的方式。是指数据相互之间是以什么方式排列在一起的。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。
常见的数据结构:
- 栈
- 队列
- 数组
- 链表
- 二叉树
- 二叉查找树
- 平衡二叉树
- 红黑树
栈:后进先出,先进后出。数据进入栈模型的过程称为:压/进栈。数据离开栈模型的过程称为:弹/出栈。
队列:先进先出,后进后出。数据从后端进入队列模型的过程称为:入队列。数据从前端离开队列模型的过程称为:出队列。
数组:一片连续的内存空间。查询速度快:查询数据通过地址值和索引定位,查询任意数据耗时相同。(元素在内存中是连续存储的)。删除效率低:要将原始数据删除,同时后面每个数据前移。添加效率极低:添加位置后的每个数据后移,再添加元素。
链表:链表中的元素是在内存中不连续存储的,每个元素节点包含数据值和下一个元素的地址。链表查询慢。无论查询哪个数据都要从头开始找。首尾操作极快。
- 链表增删相对快(相对数组)
- 在数据AC之间添加一个数据B
-
- ①数据B对应的下一个数据地址指向数据C
- ②数据A对应的下一个数据地址指向数据B
- 删除数据BD之间的数据C
-
- ①数据B对应的下一个数据地址指向数据D
- ②数据C删除
二叉树:永远只有一个根节点,每个结点不超过2个子节点的树。
- 只能有一个根节点,每个节点最多支持2个直接子节点。
- 节点的度:节点拥有的子树的个数,二叉树的度不大于2叶子节点度为0的节点,也称之为终端结点。
- 高度:叶子结点的高度为1,叶子结点的父节点高度为2,以此类推,根节点的高度最高。
- 层:根节点在第一层,以此类推。
- 兄弟节点:拥有共同父节点的节点互称为兄弟节点。
二叉查找树又称二叉排序树或者二叉搜索树。
- 特点:
-
- 每一个节点上最多有两个子节点
- 左子树上所有节点的值都小于根节点的值
-
- 右子树上所有节点的值都大于根节点的值
- 目的:提高检索数据的性能。但是可能树很高,查询性能变差。
平衡二叉树:平衡二叉树是在满足查找二叉树的大小规则下,让树尽可能矮小,以此提高查数据的性能。
- 要求:任意节点的左右两个子树的高度差不超过1,任意节点的左右两个子树都是一颗平衡二叉树。
- 平衡二叉树在添加元素后可能导致不平衡。基本策略是进行左旋,或者右旋保证平衡。
- 平衡二叉树-旋转的四种情况:
-
- 左左
- 左右
-
- 右右
- 右左
- 左左
-
- 当根节点左子树的左子树有节点插入,导致二叉树不平衡,左边高,右旋。
- 左右
-
- 当根节点左子树的右子树有节点插入,导致二叉树不平衡
先转化为左左的形式,再整体右旋。
- 右右
-
- 当根节点右子树的右子树有节点插入,导致二叉树不平衡
- 右左
-
- 当根节点右子树的左子树有节点插入,导致二叉树不平衡
先转化为右右,再整体左旋。
红黑树:
- 红黑树是一种自平衡的二叉查找树,是计算机科学中用到的一种数据结构。
- 1972年出现,当时被称之为平衡二叉B树。1978年被修改为如今的"红黑树"。
- 每一个节点可以是红或者黑;红黑树不是通过高度平衡的,它的平衡是通过“红黑规则”进行实现的。
- 红黑规则:
-
- 每一个节点或是红色的,或者是黑色的,根节点必须是黑色。
- 如果一个节点没有子节点或者父节点,则该节点相应的指针属性值为Nil,这些Nil视为叶节点,叶节点是黑色的。
-
- 如果某一个节点是红色,那么它的子节点必须是黑色(不能出现两个红色节点相连的情况)。
- 对每一个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
- 添加节点:
-
- 添加的节点的颜色,可以是红色的,也可以是黑色的。
- 默认用红色效率高。
- 红黑树增删改查的性能都很好。
图片来源于黑马程序员。