- 博客(13)
- 收藏
- 关注
原创 知识图到文本的生成(十三)
2021SC@SDUSC本篇文章将针对pargs文件后续代码进行进一步分析# training and loss parser.add_argument("-cl",default=None,type=float,help="Coverage loss") parser.add_argument("-bsz",default=32,type=int) parser.add_argument("-epochs",default=20,type=int) parser.add...
2021-12-27 14:47:20 672
原创 知识图到文本的生成(十二)
2021SC@SDUSC上两篇文章对eval中代码进行详细分析,后续文章将针对pargs文件内容进行详细分析def dynArgs(args,ds): args.ntoks = len(ds.OUTP.vocab) args.tgttoks = len(ds.TGT.vocab) args.ninput = len(ds.INP.vocab) args.vtoks = len(ds.ENT.itos) args.rtoks = len(ds.REL.itos) ar...
2021-12-27 14:29:13 839
原创 知识图到文本的生成(十一)
2021SC@SDUSC本篇文章将针对eval.py函数进行进一步分析,def evaluate(self, get_scores=True, live=False, **kwargs): if live: temp_ref = kwargs.pop('ref', {}) cand = kwargs.pop('cand', {}) else: reference_path = kwarg...
2021-12-25 22:27:17 356
原创 知识图到文本的生成(十)
2021SC@SDUSC到此为止我们最关键的函数vectorize.py已经分析完毕接下来将针对eval.py函数进行详细分析,该部分文件的主要内容是对实验模型进行性能评估,并构建新的评估类,包含各个维度的评估,这部分函数的执行结果对模型的正确性和匹配率有很好的指导意义。本篇博客将针对如下代码重点分析def __init__(self): self.scorers = [ (Bleu(4), ["Bleu_1", "Bleu_2", "Ble...
2021-12-23 15:55:58 3185
原创 知识图到文本的生成(八)
2021SC@SDUSC本文将针对verorize中relfix函数、getEnts函数、listToBatch函数进行分析重点在于三者之间的关联性分析。首先对relfix函数进行分析mat = []for x in relstrs: pieces = x.strip().split(';') x = [[int(y)+len(self.REL.special) for y in z.strip().split()] for z in pieces]...
2021-12-07 00:15:14 195
原创 知识图到文本的生成(六)
2021SC@SDUSC本文将就数据迭代部分和数据集产生部分的代码进行详细分析首先我们对mkiters函数进行分析,详细分析如下 args = self.args train = data.TabularDataset(path=args.path, format='tsv',fields=self.fields) self.trainsize = len(train.examples) valid = data.TabularDataset(p...
2021-11-24 01:21:25 361
原创 知识图到文本的生成(五)
2021SC@SDUSC这一部分代码仍旧属于mkVocab函数,但重点与上半部分不同,上半部分集中于vocab的构建,而该部分着手于如何将准备好的vocab传递给
2021-11-19 21:49:56 434
原创 知识图到文本的生成(四)
2021SC@SDUSC本文将对vectorize.py中如何产生向量部分的代码进行详细分析def mkVocabs(self,args): args.path = args.datadir + args.data self.INP = data.Field(sequential=True, batch_first=True,init_token="<start>", eos_token="<eos>",include_lengths=True) s...
2021-11-01 20:27:00 256
原创 知识图到文本的生成(三)
2021SC@SDUSC本文章将对 vectorize.py中的代码部分内容进一步分析。重点在于对如何生成矩阵的代码分析代码Link:https://github.com/rikdz/GraphWriterdef vec_ents(self,ex,field): # returns tensor and lens ex = [[field.stoi[x] if x in field.stoi else 0 for x in y.strip().split("...
2021-10-27 21:21:43 288
原创 知识图到文本的生成(二)
2021SC@SDUSC继配置好该课题代码实验环境后,小组分工后,后续多篇文章将对 vectorize.py中的代码部分内容进行分析。代码Link:https://github.com/rikdz/GraphWriter通过论文大致分析可知,vectorize.py是编码器的一部分,包括原始图向未标记连接图的重构,保留标签信息等。本篇文章将对vectorize.py中dataset类中如下代码进行详细分析。 def __init__(self, args): args.p.
2021-10-16 15:27:02 193
原创 知识图到文本的生成(一)
2021SC@SDUSC我们小组研究的课题是《知识图到文本的生成》,项目原材料1.相关论文 2.相关源代码,相关链接如下:PDF: https://aclanthology.org/N19-1238.pdf代码Link:https://github.com/rikdz/GraphWriter文章就以下四点展开论述1.提出了一个新的图转换编码器,该编码器成功地将序列变换器应用于图结构化的输入。 2. 展示了IE输出如何形成为一个连接的、未标记的图形,以用于基...
2021-09-30 19:49:57 562
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人