【华为OD机试真题 C语言】193、约瑟夫问题 | 机试真题+思路参考+代码分析

本文介绍了华为OD机试题目的约瑟夫问题,详细解析了输入输出要求,提供了解题思路和代码参考。通过动态数组处理数列,按照计数规则更新并输出数值出列顺序。


🍂个人博客首页: KJ.JK
 
🍂专栏介绍: 华为OD机试真题汇总,定期更新华为OD各个时间阶段的机试真题,每日定时更新,本专栏将使用C语言进行更新解答,包含真题,思路分析,代码参考,欢迎大家订阅学习


一、题目


🎃题目描述

输入一个由随机数组成的数列(数列中每个数均是大于0的整数,长度已知) ,和初始计数值m
 
从数列首位置开始计数,计数到m后,将数列该位置数值替换计数值m,并将数列该位置数值出列,然后从下一位置从新开始计数,直到数列所有数值出列为止
 
如果计数到达数列尾段,则返回数列首位置继续计数
 
请编程实现上述计数过程,同时输出数值出列的顺序
 
比如:输入的随机数列为: 3,1,2,4, 初始计数值m=7,从数列首位置开始计数(数值3所在位置)
 
第一轮计数出列数字为2,计数值更新m=2,出列后数列为3,1,4,从数值4所在位置从新开始计数
 
第二轮计数出列数字为3,计数值更新m=3,出列后数列为1,4,从数值1所在位置开始计数
 
第三轮计数

【源码免费下载链接】:https://renmaiwang.cn/s/jmsue 卷积神经网络(Convolutional Neural Networks, CNN)是一种深度学习模型,在图像处理和计算视觉领域具有重要应用价值。通过MATLAB这一强大的工具平台,我们可以方便地实现CNN模型的构建、训练与优化过程。该压缩包中的MATLAB代码提供了一个完整的CNN实例,用户可以直接运行并观察其工作原理。理解CNN的基本结构是掌握其核心功能的关键。CNN通常由卷积层、池化层、全连接层以及激活函数等主要组件构成。具体来说,卷积层通过使用卷积核对输入图像进行扫描操作,提取图像中的特征信息;池化层则能够有效降低数据维度的同时减少计算量,并保留关键的视觉信息特征;全连接层负责将之前提取的特征信号映射到目标任务(如分类或回归)所需的输出结果空间中。此外,在MATLAB环境下,我们可以通过`deepLearningNetwork`函数轻松创建一个CNN模型架构。具体步骤包括:首先定义网络结构参数,例如卷积层的数量、尺寸以及激活函数类型等;其次设计完整的网络层次结构,并配置相关的超参数设置;最后利用提供的训练数据对模型进行优化和调参。在实际操作中,用户需要准备并整理好适合CNN处理的高质量图像数据集,并对其进行预处理工作,如归一化、裁剪或翻转等;接着可以使用MATLAB内置的数据导入与管理工具(如`imageDatastore`)来简化数据加载流程;最后通过设置合适的训练选项参数和执行训练过程,使模型能够自动学习并提取具有判别性的特征。在模型训练完成后,用户可以通过调用`classify`或`predict`函数对测集中的图像进行分类预测,并评估模型的性能表现。值得注意的是,在这个压缩包中提供的CNN代码实例可能包含了从数据准备到模型部署的完整流程,其中包括了可视化、超参数调整等功能模
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

KJ.JK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值