两两交换链表中的节点
整体思路:
使用一个虚拟头节点会非常好做
(将当前要交换的两个节点的前一个节点叫做当前节点)
1、使用临时的指针tmp1保存当前节点的下一个节点;使用临时的指针tmp2保存当前节点的下下下节点;
2、将当前节点的next指针指向下下个节点,实现后边节点向前
3、将当前节点的下个节点(已经换成了下下节点)的next指针指向tmp指向的位置,实现前边节点向后
4、将当前节点的下下个节点(原来的当前节点下一个节点)的next指针指向tmp2指向的地址,实现将链表后边的节点链接
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* swapPairs(ListNode* head) {
//交换节点,使用一个虚拟头节点
ListNode* vir_node = new ListNode(0);
vir_node->next = head;
//定义一个当前节点
ListNode* cur = vir_node;
//判断当前节点的下一个节点、下下个节点是存在的
while(cur->next!=nullptr&&cur->next->next!=nullptr)
{
//使用临时节点保存当前节点的下一个节点
ListNode* tmp = cur->next;
//使用临时节点保存当前节点的下下下节点
ListNode* tmp2 = cur->next->next->next;
//将当前节点指向下一个节点,转换到指向下下个节点
cur->next = cur->next->next;
//将当前节点的下下个节点指向当前节点的下一个节点
cur->next->next = tmp;
//将转换后的当前节点的下下下个节点指向第四个节点
cur->next->next->next = tmp2;
//将当前节点向后移动两位,准备下个循环
cur = cur->next->next;
}
head = vir_node->next;
delete vir_node;
return head;
}
};
删除链表的倒数第N个节点
整体思路:
1、因为可能涉及到头节点的问题,使用虚拟头节点会更好
2、使用双指针(快慢指针),快的先走n步,之后快慢指针同时移动,当快指针移动到最后一个节点(next指针为nullptr),此时慢指针位于需要删除的节点的前一个节点
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode() : val(0), next(nullptr) {}
* ListNode(int x) : val(x), next(nullptr) {}
* ListNode(int x, ListNode *next) : val(x), next(next) {}
* };
*/
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
//使用快慢指针,找到倒数的第n个节点的前一个节点
//需要让快指针先走n步,之后两个指针同时走,当快指针找到最后一个节点,慢指针的位置就是要删除的节点的上一个节点
//使用虚拟头节点,便于处理头节点的特殊性
ListNode* vir_code =new ListNode(0,head);
ListNode* fast_code = vir_code;
ListNode* slow_code = vir_code;
while(n--&&fast_code!=nullptr)
{
fast_code = fast_code->next;
}
//让fast走到最后一个节点
while(fast_code->next!=nullptr)
{
fast_code = fast_code->next;
slow_code = slow_code->next;
}
//开始删除
ListNode* tmp = slow_code->next;
slow_code->next = slow_code->next->next;
delete tmp;
head = vir_code->next;
delete vir_code;
return head;
}
};
链表相交
题目链接:LeetCode、02.07 链表相交
整体思路:
主要是理解什么叫做相交:相交之后的所有节点指针一致(值、next指针),所以会数量相同。
所以可以判断两个链表的长度,将长的链表移动到与短的链表一致的位置之后,开始遍历两个链表,查找第一个相同的节点指针(值、next)
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
//理解相交的意思:后边所有节点一样
//所以相交后,之后的长度必须相同,可以将长的链表移动到与短的链表一致,在开始寻找交点
//计算连哥哥链表的长度
int lenA=0,lenB=0;
ListNode*curA=headA;
ListNode*curB=headB;
for(;curA!=nullptr;curA=curA->next)
{
lenA++;
}
while(curB!=nullptr)
{
lenB++;
curB=curB->next;
}
curA=headA;
curB=headB;
//判断长度,使长的链表的长度与短的一致
while(lenA>lenB)
{
curA = curA->next;
lenA--;
}
while(lenB>lenA)
{
curB = curB->next;
lenB--;
}
//开始同时遍历
while(curA!=nullptr&&curB!=nullptr)
{
if(curA==curB)break;
curA = curA->next;
curB = curB->next;
}
if(curA!=nullptr)return curA;
else return nullptr;
}
};
环形链表Ⅱ
题目链接:LeetCode142 环形链表Ⅱ
整体思路:
1、判断是否有环:使用一个快指针一个慢指针,快指针每次移动两个节点,慢指针每次移动一个节点。这样一定可以在环中相遇。(同时要注意是否越界)
2、寻找环的入口:设入环长度为x,入环到相遇为y,环剩余长度为z
那么相遇时:x+y是slow指针的距离,相差两倍:2(x+y)就是fast距离
3、2(x+y)= x+y+n(y+z)--->x+y = n(y+z)--->x = (n-1)(y+z)+z:n一定是大于等于1的,因为n表示fast指针在环中出入多少次,大于等于才能追上slow。
4、当等于1时,x = z ;即如果在相遇的y节点之后,从头节点和z的起始节点同时指针向前前进,最后相遇的地方就是环形入口的节点;当n!=1的时候 ,是一样的,只是多转了n-1圈
看完答案才知道用快慢指针。。。。需要着重复习这道题
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode*fast_code = head;
ListNode*slow_code = head;
while(fast_code!=nullptr&&fast_code->next!=nullptr&&fast_code->next->next!=nullptr)
{
fast_code = fast_code->next->next;
slow_code = slow_code->next;
if(fast_code == slow_code)//相遇
{
ListNode* cur = fast_code;
slow_code = head;
while(cur!=slow_code)
{
cur = cur->next;
slow_code = slow_code->next;
}
break;
}
}
if(fast_code!=nullptr&&fast_code->next!=nullptr&&fast_code->next->next!=nullptr)return slow_code;
else return nullptr;
}
};