- 博客(4)
- 收藏
- 关注
原创 【深度学习与神经网络】【三】学习笔记
TP: 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数FP: 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数FN:被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数TN: 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。
2024-04-22 11:37:40 655 1
原创 【深度学习与神经网络】【二】学习笔记
全连接网络:链接权过多,算的慢,难收敛,同时可能进入局部极小值,也容易产生过拟合问题。<解决方案>局部连接网络:减少权值连接,每一个节点只连到上一层的少数神经元。解决难收敛、算的慢问题:权值过多极易产生过拟合。如何消除?回想人类解决思路:信息分层处理,每一层在上层提取特征的基础上获取进行再处理,得到更高级别的特征。
2024-04-08 16:45:57 1009
原创 【深度学习与神经网络】【一】学习笔记
定义:利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法要素:训练集x,输出数据y,模型为假设给定样本构造代价(误差、损失函数):目标:找到超平面参数使最小,则求解为:即可得到。
2024-03-31 22:28:33 1162
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人