自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 使用Python画中国2012年-2022年年总发电量柱状图

【代码】使用Python画中国2012年-2022年年总发电量柱状图。

2023-04-22 15:02:56 278

原创 Symbolic Discovery of Optimization Algorithms 中所提出优化器Lion的代码

Lion是谷歌最近提出的一个优化器,声称对大批量或大模型的训练效果挺好的,官方提供有各个版本的代码(包括pytorch版本的)。

2023-02-23 16:36:46 534

原创 Attentional Feature Fusion中所提的注意力模块的代码

最近看了Attentional Feature Fusion这篇文章,对其提出的注意力机制模块很感兴趣,所以就上github找了一下,为了方便自己记录和使用,所以就复制到这里了。

2023-02-22 10:46:27 1035

原创 基于MMSegmentation,在自己的数据集(voc格式的分割数据集)上复现upernet_convnext网络。

最近在做分割任务,看了一篇《A ConvNet for the 2020s》里面提到一个upernet网络做分割任务,发现现在很多做分割的都基于mmsegmentation这个类似的工具箱做,所以我也尝试用它训练一下,也方便以后做对比实验。因为第一次使用mmsegmentation,所以不太熟练,经过几天努力终于跑通了,在这里记录和分享一下,免得以后自己忘记那个步骤,又跑不通了。

2023-01-18 00:15:01 1935 5

原创 用于从一个txt文件中读取数字,然后在另一个文件夹下将对应的txt文件复制到另一个文件夹的python代码。

【代码】用于从一个txt文件中读取数字,然后在另一个文件夹下将对应的txt文件复制到另一个文件夹的python代码。

2023-01-10 16:48:01 228

原创 将labelme标注的语义分割标签(.json)文件,转成训练YOLOv5_7.0分割代码的YOLO格式标签(.txt)的python代码。

【代码】将labelme标注的语义分割标签(.json)文件,转成训练YOLOv5_7.0分割代码的YOLO格式标签(.txt)的python代码。

2023-01-10 16:26:56 3069 17

原创 pytorch实现的通道注意力机制SENet的代码

通道注意力机制SENet`import torchimport torch.nn as nnclass SELayer(nn.Module):def init(self, channel, reduction=16):super(SELayer, self).init()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=Fa

2022-05-05 16:44:15 626

原创 使用python读取txt中的数字,并根据数字从别的文件夹选取图片保存在别的文件夹中

from PIL import Imageim_num = [] # 创建一个列表for line in open("E:\Dataset/val.txt", "r"): # 以只读方式打开txt文件。文件的指针将会放在文件的开头。 im_num.append(line) # 将读取的数字导入im_num列表中# print(im_num)for a in im_num: # 遍历im_num列表 im_name = 'E:\Dataset\JPEGImages/{}'.

2021-10-16 15:49:24 345

原创 如何修改pytorch官方实现的Densenet的分类数,用于跑自己的数据

pytorch官方实现的Densenet的分类数是1000类,当我们想用来跑自己的数据集时,类别可能没有这么多,这时就需要我们去更改网络最后的分类器##修改分类器代码如下model = models.densenet169(pretrained=True)###重塑最后分类层 class_num为自己的类别数,可以直接填数字model.classifier = torch.nn.Linear(model.classifier.in_features, class_num) model = mod

2021-09-06 17:30:15 980

原创 DenseNet网络代码详解

这个代码是pytorch官方实现的代码,自己做了些备注,主要是方便自己以后学习和使用。下图自己根据代码画的densenet169的网络结构图,输入图片的尺寸跟官方有所不同,而且对过度层的平均池化也做了一些更改,将ceil_mode=False改为了ceil_mode=Ture下图是densebock1的一小部分示意图下图是过度层的模块图import reimport torchimport torch.nn as nnimport torch.nn.functional as Fimp

2021-08-05 10:51:35 2098 2

原创 训练模型时如何加载预训练权重

这里主要介绍两种加载预训练权重的情况:1)是所加载的预训练权重跟网络的初始权重是一一对应的,即字典的键值是对应的只是键的名称不同;2)是所加载的预训练权重跟网络的初始权重不是一一对应的,但所加载的权重中有跟网络初始权重所对应的值第一种情况net_weights = net.dense.state_dict() #读取网络的初始权重,以字典的形式存在net_weights中pre_weights = torch.load(args.save_folder + args.basenet) # 加

2021-08-04 16:22:59 2893

原创 python如何更改voc数据集中图片的编号和.xml中的filename与path

由于科研的需要,需要更改voc数据集的图片编号和.xm中的一些属性,所以整理了网上的一些代码,一来方便大家,二来方便自己。如有不对的地方请多多指教。#改变图像编号的代码块import osimport shutilpath = "E:\VOC_insulator\Data1\VOCdevkit\VOC2007\JPEGImages/" # 目标路径filename_list = os.listdir(path) # 扫描目标路径的文件,将文件名存入列表t = 0a = 9964

2021-05-11 22:42:22 1044

原创 VOC数据集生成ImageSets/Main中的各类txt文件

import osimport randomimport xml.etree.ElementTree as ET# def generate_train_val_test_txt():xml_file_path = 'Annotations/' # xml文件路径save_Path = 'ImageSets/Main'trainval_percent = 0.9train_percent = 0.8total_xml = os.listdir(xml_file_path) # 得到

2021-05-05 21:50:28 2279

原创 成功运行RealnessGAN,并进行数据增强

成功运行RealnessGAN,并进行数据增强前言一、环境二、下载代码三、创建文件夹四、修改代码1.修改options.py2.修改train.py总结前言RealnessGAN网络是《Real or Not Real, that is the Question》这篇文章于2020年发表在ICLR中提出的一个GAN网络结构。本人主要是想使用这个网络进行数据增强。本文主要是想记录本人在运行代码时遇到的问题,方便记忆。一、环境Windows10Anaconda3(python3.6.12)GPU:G

2021-03-29 22:07:39 834 11

原创 成功运行SSD_Pytorch并训练自己的数据集

目录前言一、环境二、准备数据集1.voc2007数据集2.voc2012数据集三、从Github上下载作者源码创建文件夹四、修改代码1.修改data/config.py2.修改data/voc0712.py3.修改layers/modules/multibox_loss.py4.修改train.py5.修改ssd.py五、开始训练六、运行eval.py1.修改eval.py2.修改ssd.py七、运行test.py修改test.py八、运行demo.ipynb修改demo.py总结前言本文主要是记录自己

2021-01-18 22:05:32 11015 64

相机和雷达的联合标定样例及代码

就是采集图像信息时,同时采集雷达信息,将雷达信息标定在二维图像上。 现在一些深度学习目标检测网络,可以同时处理图像信息和雷达信息,采用雷达信息标定的点辅助网络进行目标检测,提升检测精度,研究深度学习的人可以用到。自动驾驶研究也可以采用。

2023-01-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除