C++ 编译期反射1 - 获取枚举的类型名

本文介绍了如何在C++中利用模板元编程自制编译期反射,以获取枚举的类型名。虽然C++23/26才会正式支持编译期反射,但通过本文的方法,开发者可以在MSVC, Clang和GCC上实现类似功能,不过这可能会增加编译时间。文中详细解释了实现原理,并展示了如何在不同编译器下获取枚举类型名的代码片段。作者还预告下期将讨论获取枚举值名称的内容。" 51637146,1333475,LeetCode: 利用位操作解决重复DNA序列问题,"['算法', '位运算', '数据结构', '字符串', 'LeetCode挑战']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C++ 编译期反射1 - 获取枚举的类型名

注意: 本人是原创, 如若发现雷同,后果自负

有时我们需要获取类型的信息. 类型名, 枚举值的名, 等等. C++ 暂时不支持编译期反射(C++ 23/26会支持), 但是我们可以自己实现, 缺点就是会拖延编译速度.

开发环境:

支持 msvc, clangg++, 需要C++17以上

实现:

// enum_info.hpp
#ifndef ENUM_INFO_HPP
#define ENUM_INFO_HPP

#include <cstddef>
#include <string_view>
#include <type_traits>

namespace enum_info
{
   

using string_view = std::string_view;

namespace details
{
   

template <typename Enum_type>
constexpr auto enum_type_name() noexcept
{
   
    // 静态断言, Enum_type 必须是枚举类型
    static_assert(std::is_enum_v<Enum_type>
题目描述 有一个 $n$ 个的棋盘,每个上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个的父节是它的前驱或者后继,然后我们从根节开始,依次向下遍历,对于每个节,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有的权值和的最小值,然后再将这个值加上当前节的权值,就可以得到从根节到当前节的路径中,所有的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值