Problem Description
我们称序列Z = < z1, z2, …, zk >是序列X = < x1, x2, …, xm >的子序列当且仅当存在严格上升的序列< i1, i2, …, ik >,使得对j = 1, 2, … ,k, 有xij = zj。比如Z = < a, b, f, c > 是X = < a, b,c, f, b, c >的子序列。
现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。
Input
输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列。两个字符串之间由若干个空格隔开。
Output
对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。
Sample Input
abcfbc abfcab
programming contest
abcd mnp
Sample Output
4
2
0
解题思路
如果我们用字符数组s1、s2存放两个字符串,用s1[i]表示s1中的第i个字符,s2[j]表示s2中的第j个字符(字符编号从1开始,不存在“第0个字符”),用s1i表示s1的前i个字符所构成的子串, s2j表示s2的前j个字符构成的子串,MaxLen(i, j)表示s1i和s2j的最长公共子序列的长度,那么递推关系如下:
if(i ==0 || j == 0)
{
MaxLen(i, j) = 0 //两个空串的最长公共子序列长度当然是0
}
else if(s1[i] == s2[j])
MaxLen(i, j) = MaxLen(i-1, j-1 ) + 1;
else
{
MaxLen(i, j) = Max(MaxLen(i, j-1), MaxLen(i-1, j));
}
MaxLen(i, j) = Max( MaxLen(i, j-1), MaxLen(i-1, j)) 这个递推关系需要证明一下。
我们用反证法来证明,MaxLen(i, j)不可能比MaxLen(i, j-1)和MaxLen(i-1, j)都大。先假设MaxLen(i,j)比MaxLen(i-1, j)大。如果是这样的话,那么一定是s1[i]起作用了,即s1[i]是s1i 和s2j 的最长公共子序列里的最后一个字符。同样,如果MaxLen(i, j)比MaxLen(i, j-1)大,也能够推导出,s2[j]是s1i 和s2j的最长公共子序列里的最后一个字符。即如果MaxLen(i, j)比MaxLen(i, j-1)和MaxLen(i-1, j)都大,那么,s1[i]应该和s2[j]相等。但这是和应用本递推关系的前提----- s1[i]≠s2[j]相矛盾的。
因此,MaxLen(i, j)不可能比MaxLen(i, j-1)和MaxLen(i-1, j)都大。MaxLen(i, j)当然不会比MaxLen(i, j-1)和MaxLen(i-1, j)中的任何一个小,因此,MaxLen(i, j) = Max( MaxLen(i, j-1), MaxLen(i-1, j)) 必然成立。
**显然本题目的“状态”就是s1 中的位置i和s2中的位置j。“值”就是MaxLen(i, j)。**状态的数目是s1长度和s2长度的乘积。可以用一个二维数组来存储各个状态下的“值”。
代码
#include <stdio.h>
#include <string.h>
#define MAX_LEN 1000
char s1[MAX_LEN];
char s2[MAX_LEN];
int aMaxLen[MAX_LEN][MAX_LEN];
int main()
{
while(scanf("%s%s", s1+1 ,s2+1 ) > 0)
{
int nLength1 = strlen(s1+1);
int nLength2 = strlen(s2+1);
int nTmp;
int i, j;
for(i = 0;i <= nLength1; i++)
aMaxLen[i][0] = 0;
for(j = 0;j <= nLength2; j++)
aMaxLen[0][j] = 0;
for(i = 1;i <= nLength1;i++)
{
for(j = 1; j <= nLength2; j++)
{
if(s1[i] == s2[j])
aMaxLen[i][j] = aMaxLen[i-1][j-1] + 1;
else {
int nLen1 = aMaxLen[i][j-1];
int nLen2 = aMaxLen[i-1][j];
if( nLen1 > nLen2 )
aMaxLen[i][j] = nLen1;
else
aMaxLen[i][j] = nLen2;
}
}
}
printf("%d\n", aMaxLen[nLength1][nLength2]);
}
}