一、题目描述
链接直达:368. 最大整除子集
二、思路分析
最大整除子集意味着:
- 集合中任意两个数满足:
a % b == 0 || b % a == 0
- 集合元素个数是最多的
题目要求一个最大子集的list集合,不唯一。这并不能很方便的直接求出来,可以先求最大子集的长度。
怎样求最大子集的长度呢?
- 将数组按升序排序
- 创建
dp[]
数组,dp[i]
意思是:nums[i]
是某一整除子集的最大元素是,最大整除子集的长度是dp[i]; dp[0]
毫无疑问就是1,那dp[i]
是多少呢?我们可以遍历dp[0] - dp[i - 1]
看是否nums[i]加入其中的整除子集是否还是整除子集,例如nums[i]
加入dp[0]
对应的子集后构成的新子集{nums[0], nums[i]}
还是否是整除子集,如果是那dp[i] = dp[0] + 1
, 否的话跳过这个比较下一个。- 那么你可能疑惑了,如果都跳过了怎么办?你想一下,那是不是就意味着
dp[i] = 1
呢。 - 注意了,
dp[i]
保存的是最大值,所以在比较过程中,要把小的给踢掉,大的保留。这样一来就得到dp[i]
的最终值了。
我们已经得到了dp[]数组,怎么求序列呢?这里给个例子,你就明白了。
nums = {2, 4, 7, 8, 9, 12, 16, 18}
dp = {1, 2, 1, 3, 1, 3, 4, 3}
得到最大整除子集的做法如下:
- dp中的最大值是4,对应的子集A的最大元素为16
- 将子集A的16拿掉,那岂不是就变成dp[i] = 3对应的子集了吗。
- 那么有这么多值为3的选项那个才是呢?这岂不是很简单,只要dp[i]对应的nums[i]是16的约数不就是了吗。例如dp[3]
- 这样不就找着了次大值了吗,就是nums[3] = 8
- 接下来就类似的找次次小的,次次次小的。直到找完4个数。
真的挺难想的,最后看代码把。写的挺冗余的。
class Solution {
public List<Integer> largestDivisibleSubset(int[] nums) {
Arrays.sort(nums);
int len = nums.length;
int[] dp = new int[len];
Arrays.fill(dp, 1);
for (int i = 1; i < len; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] % nums[j] == 0) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int maxVal = nums[len - 1];
int maxNum = 1;
for (int i = len - 1; i >= 0; i--) {
if (dp[i] > maxNum) {
maxVal = nums[i];
maxNum = dp[i];
}
}
ArrayList<Integer> list = new ArrayList<>();
list.add(maxVal);
for (int i = maxNum - 1; i > 0; i--) {
for (int j = len - 1; j >= 0; j--) {
if (dp[j] == i && maxVal % nums[j] == 0) {
maxVal = nums[j];
list.add(maxVal);
}
}
}
return list;
}
}
三、后记
第一次写,挺费时间的,不知能不能继续写下去。