Yolo系列小目标改进与实战
文章平均质量分 95
将对小目标有效的方法和论文汇总到这个专栏
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
AI智韵
专注AI技术,紧跟时代前沿,将最新的论文成果运用到Yolo系列的改进中!每篇文章都包含几种改进方法,步骤详细,解释清楚,还提供了PDF版本的文章和完整的改进代码!大家遇到使用的问题,或者我写的不清楚的地方,请私信告诉我!如果是写的不够清楚,我再去修改,如果有错误和Bug,我尽快修复!谢谢大家!
展开
-
【专栏目录】
本专栏是讲解如何改进Yolo系列小目标的的专栏。改进方法采用了最新的论文提到的方法。改进的方法包括:增加注意力机制、更换卷积、更换block、更换backbone、更换head、更换优化器等;每篇文章提供了一种到N种改进方法。本专栏的改进方法是面向小目标以及密集小目标场景。评测用的数据集是我自己标注的数据集,里面包含32种飞机。每种改进方法我都做了测评,并与官方的模型做对比。代码和PDF版本的文章,我在验证无误后会上传到百度网盘中,方便大家下载使用。这个专栏,求质不求量,争取尽心尽力打造精品专栏!!原创 2024-01-08 06:43:32 · 2534 阅读 · 0 评论 -
YoloV5改进策略:BAM瓶颈注意力模块|BAM详解以及代码注释|CBAM姊妹篇|有效涨点
深度学习已经成为一系列模式识别应用的有力工具,包括分类、检测、分割和控制问题。由于其数据驱动的本质和大规模并行计算的可获得性,深度神经网络在大多数领域都取得了最先进的结果。研究人员已经通过多种方式来提高性能,例如设计优化器[28,48],提出对抗训练方案[11],或针对特定任务的元架构,如两阶段架构[37]进行检测。提高性能的基本方法是设计一个好的主干网络架构。原创 2024-01-18 22:12:13 · 1570 阅读 · 0 评论 -
MwdpNet:致力于提高高分辨率遥感图像微小目标的识别精度
这项研究的目标是开发一种深度学习模型,以提高在高分辨率遥感(HRS)图像上识别微小目标的准确性。我们提出了一种新颖的多级加权深度感知网络,我们称之为MwdpNet,以更好地捕获HRS图像中微小目标的特征信息。在我们的方法中,我们引入了一个新的分组残差结构S-Darknet53,作为我们提出的MwdpNet的骨干网络,并提出了一种多级特征加权融合策略,以充分利用浅层特征信息来提高检测性能,特别是对于微小目标。为了充分描述图像的高层次语义信息,获得更好的分类性能,我们设计了一个深度感知模块(DPModule)原创 2024-01-07 11:35:56 · 2097 阅读 · 0 评论 -
YoloV8改进策略:Shape-IoU,考虑边框形状与尺度的度量
目标检测是计算机视觉中的基本任务之一,其目标是在图像中定位和识别物体。根据是否生成锚点,目标检测可以分为基于锚点和无锚点的方法。基于锚点的算法包括Faster R-CNN [1]、YOLO系列(You Only Look Once) [2]、SSD(Single Shot MultiBox Detector) [3]和RetinaNet [4]。原创 2024-01-07 08:35:38 · 2657 阅读 · 0 评论 -
YoloV8改进策略:ASF-YOLO,结合了空间和尺度特征在小目标和密集目标场景有效涨点
随着样本制备技术和显微成像技术的快速发展,细胞图像的定量处理和分析在医学、细胞生物学等领域发挥着重要作用。基于卷积神经网络(CNN),可以通过神经网络训练学习不同细胞图像的特征信息,具有很强的泛化性能。两阶段的R-CNN系列[1,2,3]及其一阶段变体[4,5]是实例分割任务的经典CNN基础框架。在最近的研究中,You Only Look Once(YOLO)系列[6,7,8,9]已经成为实时实例分割中速度最快、最准确的模型之一。原创 2023-12-19 06:04:57 · 4073 阅读 · 3 评论 -
YoloV8改进策略:动态蛇形卷积,解决管状结构问题
DSCNet是ICCV 2023的一篇论文,有效解决了管状结构的精确分割问题。模型通过三个阶段来增强感知,包括特征提取、特征融合和损失约束。其中,特征提取阶段通过提出一种动态蛇形卷积来准确捕捉管状结构的特征;特征融合阶段采用多视角特征融合策略,保留来自不同全局形态的重要信息;损失约束阶段则通过基于持久同调的连续性约束损失函数来更好地约束分割的拓扑连续性。实验结果表明,该模型在管状结构分割任务上具有更好的准确性和连续性。我将其引入到YoloV8中,效果如何呢?我们一起见证吧!原创 2023-11-20 06:50:53 · 2507 阅读 · 0 评论 -
YoloV8改进策略:WaveletPool解决小目标的混叠问题,提高小目标的检测精度
抗混叠在小目标检测中扮演着重要的角色。通过研究ICCV 2023的最新论文,成功地引入了抗混叠技术到YoloV8改进中,提高了小目标检测的精度。这表明抗混叠技术在小目标检测中起到了关键作用,可以有效地提高检测精度。在引入抗混叠技术之前,小目标检测一直是一个挑战,因为它们往往被混淆或忽略。通过引入抗混叠技术,成功地解决了这个问题,提高了YoloV8在小目标检测方面的性能。Tiny object detection是目标检测领域的一个专门领域,专注于在图像中识别和定位小物体。原创 2023-11-22 06:46:33 · 3692 阅读 · 4 评论 -
YoloV7改进策略:独家原创,全网首发,复现Drone-Yolo,以及改进方法
Drone-Yolo在无人机数据集上取得了巨大的成功,mAP0.5指标上取得了显著改进,在VisDrone2019-test上增加了13.4%,在VisDrone2019-val上增加了17.40%。这篇文章我首先复现Drone-Yolo,然后,在Drone-Yolo的基础上加入我自己对小目标检测的改进。近15年来,随着无人机控制技术的逐步成熟,无人机遥感影像因其性价比高、易于获取等优点,已成为低空遥感研究领域的重要数据源。原创 2023-11-17 17:13:54 · 1511 阅读 · 2 评论 -
YoloV8改进策略:Gold-YOLO高效目标检测器与YoloV8激情碰撞
物体检测是一项基本的视觉任务,其目的是识别物体的类别和定位物体的位置。可广泛应用于智能安防、自动驾驶、机器人导航、医疗诊断等领域。在边缘设备上部署高性能、低延迟的对象检测器正受到越来越多的关注。原创 2023-11-12 16:37:05 · 2951 阅读 · 1 评论 -
YoloV5改进策略:独家原创,全网首发,复现Drone-Yolo,以及改进方法
Drone-Yolo在无人机数据集上取得了巨大的成功,mAP0.5指标上取得了显著改进,在VisDrone2019-test上增加了13.4%,在VisDrone2019-val上增加了17.40%。这篇文章我首先复现Drone-Yolo,然后,在Drone-Yolo的基础上加入我自己对小目标检测的改进。近15年来,随着无人机控制技术的逐步成熟,无人机遥感影像因其性价比高、易于获取等优点,已成为低空遥感研究领域的重要数据源。原创 2023-11-07 22:10:29 · 1835 阅读 · 0 评论 -
YoloV8改进策略:独家原创,全网首发,复现Drone-Yolo,以及改进方法
近15年来,随着无人机控制技术的逐步成熟,无人机遥感影像因其性价比高、易于获取等优点,已成为低空遥感研究领域的重要数据源。在此期间,深度神经网络方法得到了广泛的研究,并逐渐成为图像分类[1-3]、目标检测[4-6]和图像分割[7-9]等任务的最佳方法。然而,目前应用的大多数深度神经网络模型,如VGG[1]、RESNET[2]、U-NET[7]、PSPNET[8],主要是使用手动采集的图像数据集开发和验证的,如VOC2007[10]、VOC2012[11]、MS-COCO[12],如图1所示。原创 2023-11-02 06:51:49 · 4647 阅读 · 21 评论 -
YoloV7改进策略:重新封装YoloV7,方便后续更改
YoloV7虽然和YoloV5、YoloV8一脉相承,但是其配置文件及其复杂,对修改造成一定的难度。# anchorsanchors:backbone:head:太多的层次了。所以,先对YoloV7做封装。原创 2023-10-30 22:15:23 · 2018 阅读 · 4 评论 -
YoloV7改进策略:复现HIC-YOLOv5,打造HIC-YOLOv7,用于小物体检测
HIC-YOLOv5主要贡献可以总结如下:额外的预测头专为小物体设计。它在更高分辨率的特征图中检测物体,这些特征图包含更多关于微小和小物体的信息。添加了一个内卷积块作为主干和颈部之间的桥梁,以增加特征图的通道信息。在主干的末端应用了CBAM,从而提取了更多重要的通道和空间信息,同时忽略了冗余的信息。结果表明,HIC-YOLOv5在VisDrone-2019-DET数据集上的mAP@[.5:.95]提高了6.42%,mAP@0.5提高了9.38%。原创 2023-10-29 19:45:21 · 2024 阅读 · 6 评论 -
YoloV5改进策略:复现HIC-YOLOv5,用于小物体检测
HIC-YOLOv5主要贡献可以总结如下:额外的预测头专为小物体设计。它在更高分辨率的特征图中检测物体,这些特征图包含更多关于微小和小物体的信息。添加了一个内卷积块作为主干和颈部之间的桥梁,以增加特征图的通道信息。在主干的末端应用了CBAM,从而提取了更多重要的通道和空间信息,同时忽略了冗余的信息。结果表明,HIC-YOLOv5在VisDrone-2019-DET数据集上的mAP@[.5:.95]提高了6.42%,mAP@0.5提高了9.38%。原创 2023-10-05 13:21:47 · 2579 阅读 · 3 评论 -
YoloV8改进策略:复现HIC-YOLOv5,打造HIC-YOLOv8,用于小物体检测
HIC-YOLOv5主要贡献可以总结如下:额外的预测头专为小物体设计。它在更高分辨率的特征图中检测物体,这些特征图包含更多关于微小和小物体的信息。添加了一个内卷积块作为主干和颈部之间的桥梁,以增加特征图的通道信息。在主干的末端应用了CBAM,从而提取了更多重要的通道和空间信息,同时忽略了冗余的信息。结果表明,HIC-YOLOv5在VisDrone-2019-DET数据集上的mAP@[.5:.95]提高了6.42%,mAP@0.5提高了9.38%。原创 2023-10-04 10:08:03 · 3676 阅读 · 16 评论 -
HIC-YOLOv5:改进的YOLOv5,用于小物体检测
论文链接:https://arxiv.org/pdf/2309.16393.pdf小目标检测一直是目标检测领域的一个具有挑战性的问题。有一些工作提出了针对此任务的改进,例如添加多个注意力块或更改特征融合网络的整个结构。然而,这些模型的计算成本很大,这使得部署实时目标检测系统变得不可行,同时留下了改进的空间。为此,提出了一个改进的YOLOv5模型:HICYOLOv5来解决上述问题。首先,添加了一个特定于小目标的额外预测头,以提供更高分辨率的特征图以进行更好的预测。原创 2023-10-04 07:02:58 · 2710 阅读 · 1 评论 -
YoloV5改进策略:LSKNet加入到YoloV5中,打造更适合小目标的YoloV5
LSKNet核心思想是通过学习旋转不变的特征表示来提高目标检测的性能。在目标检测任务中,特别是遥感图像的目标检测,目标的旋转是一个常见的挑战。为了解决这个问题,LSKNet采用了一种新颖的旋转敏感的卷积操作,能够有效地捕捉到遥感图像中目标的旋转信息。LSKNet的设计思路是通过空间选择机制实现自适应感受野。在传统的卷积神经网络中,卷积核的大小是固定的,而在LSKNet中,卷积核的大小是根据输入动态确定的。这意味着该模型可以根据需要调整每个目标的感受野,从而更好地捕捉目标的特征。原创 2023-10-04 04:25:25 · 2417 阅读 · 4 评论 -
YoloV8改进策略:LSKNet加入到YoloV8中,打造更适合小目标的YoloV8
遥感目标检测【75】是计算机视觉的一个领域,专注于在航空图像中识别和定位感兴趣的物体,如车辆或飞机。近年来,一个主流趋势是生成准确符合被检测物体方向的边界框,而不是简单地在它们周围绘制水平框。因此,大量的研究集中在改进遥感目标检测中有向边界框的表示。这主要是通过开发专门的检测框架实现的,如RoI Transformer【12】、Oriented R-CNN【62】和R3Det【68】,以及有向框编码技术,如滑动顶点【64】和中点偏移框编码【62】。原创 2023-10-03 15:11:51 · 3283 阅读 · 1 评论 -
YoloV8改进策略:SPD-Conv加入到YoloV8中,让小目标无处遁形
自AlexNet[18]以来,卷积神经网络(CNN)在许多计算机视觉任务中表现出色。例如,在图像分类中,著名的CNN模型包括AlexNet、VGGNet[30]、ResNet[13]等;而在目标检测中,这些模型包括R-CNN系列[9,28]、YOLO系列[26,4]、SSD[24]、EfficientDet[34]等等。然而,所有这些CNN模型都需要在训练和推理中输入“质量好的”输入(清晰图像、中等大小至较大的目标)。原创 2023-10-02 07:12:54 · 2170 阅读 · 1 评论 -
YoloV8改进策略:NWD小目标检测新范式,助力YoloV5、V8在小目标上暴力涨点
检测微小物体是一个极具挑战性的问题,因为微小物体只包含几个像素大小。由于缺乏外观信息,最先进的目标检测器在微小物体上无法产生令人满意的结果。由于,IoU(交并比)等基于IoU的指标及其扩展对微小物体的位置偏差非常敏感,并且在基于锚点的检测器中使用时,会急剧恶化检测性能。为了缓解这个问题,作者提出了一种用于微小物体检测的新评估指标,即使用Wasserstein距离。首先将边界框建模为2D高斯分布,然后提出了一种名为归一化Wasserstein距离(NWD)的新度量方法,通过相应的高斯分布来计算它们的相似性。原创 2023-10-02 07:11:30 · 2223 阅读 · 4 评论 -
小型目标检测中的Transformer:一个基准和最先进技术的综述
Transformer在计算机视觉领域,尤其是在目标识别和检测领域中,已经迅速获得了流行。在检查最先进的目标检测方法的结果时,我们注意到,在几乎每个视频或图像数据集中,transformer都一致地超越了基于CNN的检测器。尽管基于transformer的方法仍然处于小目标检测(SOD)技术的最前沿,但本文旨在探索这些广泛网络所提供的性能优势,并确定它们在SOD方面的优势的潜在原因。由于小目标在检测框架中的可见度很低,因此它们被确定为检测框架中最具挑战性的目标类型之一。原创 2023-10-01 19:40:24 · 1641 阅读 · 0 评论