深度学习基础

深度学习是一种机器学习技术,通过多层过滤输入来预测和分类信息。它模拟神经元工作原理,输入层如同人的感官,将信息转化为数字,通过神经元间的权重调整(即synapses)进行学习。权重在人工神经网络中至关重要,训练网络就是调整这些权重的过程。
摘要由CSDN通过智能技术生成

什么是深度学习:
Deep learning is a machine learning technique.
It teaches a computer to filter inputs through layers to learn how to predict and classify information.

深度学习原理:
起源于人的神经元:
在这里插入图片描述
Neurons by themselves are kind of useless. But when you have lots of them, they work together to create some serious magic.
That connection where the signal passes is called a synapse.
So the neuron (or node) gets a signal or signals (input values), which pass through the neuron. That neuron delivers the output signal. Think of the input layer as your senses: the things you, for example, see, smell, and feel. These are independent variables for one single observation. This information is broken down into numbers and the bits of binary data that a computer can use. (You will need to either standardize or normalize these vari

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值